
Nathalia Moraes do Nascimento

FIoT: An Agent-Based Framework for Self-Adaptive
and Self-Organizing Internet of Things Applications

DISSERTAÇÃO DE MESTRADO

Dissertation presented to the Programa de Pós–graduação em Informática
of the Departamento de Informática do Centro Técnico Cient́ıfico da PUC–
Rio as partial fullfilment of the requirements for the degree of Mestre em
Informática.

Advisor: Prof. Carlos José Pereira de Lucena

Rio de Janeiro
August 2015

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Nathalia Moraes do Nascimento

FIoT: An Agent-Based Framework for Self-Adaptive
and Self-Organizing Internet of Things Applications

Dissertation presented to the Programa de Pós–graduação em Informática of
the Departamento de Informática do Centro Técnico Cient́ıfico da PUC–Rio
as partial fullfilment of the requirements for the degree of Mestre.

Prof. Carlos José Pereira de Lucena
Advisor

Departamento de Informática — PUC–Rio

Prof. Andrew Diniz da Costa
Departamento de Informática –PUC-Rio

Prof. Hugo Fuks
Departamento de Informática –PUC-Rio

Prof. Ruy Luiz Milidiu
Departamento de Informática –PUC-Rio

Prof. José Eugênio Leal
Coordinator of the Centro Técnico Cient́ıfico da PUC-Rio

Rio de Janeiro, August 31 th, 2015

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



All rigths reserved.

Nathalia Moraes do Nascimento

B.Sc. in Computer Engineering, State University of Feira de Santana
(UEFS), 2013. She is a researcher member of the Software Engineering
Laboratory at the Pontifical Catholic of Rio de Janeiro since 2013. Her
main studies are related to the area of software engineering, artificial
intelligence, multi-agent systems, and internet of things.

Bibliographic data
Nascimento, Nathalia Moraes do

FIoT: An Agent-Based Framework for Self-Adaptive and Self-
Organizing Internet of Things Applications / Nathalia Moraes do Nasci-
mento; advisor: Carlos José Pereira de Lucena. — 2015.

102 f. : il. (color); 30 cm

1. Dissertação (Mestrado em Informática) - Pontif́ıcia Universidade
Católica do Rio de Janeiro, Rio de Janeiro, 2015.

Inclui bibliografia.

1. Informática – Teses. 2. Sistema Multiagente. 3. Auto-Organização.
4. Autoadaptação. 5. Internet das Coisas. 6. Aprendizado de Máquina.
I. Lucena, Carlos José Pereira de. II. Pontif́ıcia Universidade Católica do
Rio de Janeiro. Departamento de Informática. III. T́ıtulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Aknowledgments

Thank You, God, for putting the correct people in my life. I could not

have done this work without them:

– My family - Nilza, Geraldo, Gabriela, and Júllia- who always give me all

the support that I need. They are my greatest inspiration for becoming

a better person;

– My advisor, Carlos Lucena, who is my biggest reference;

– My boyfriend, Juliano, who I admire so much and motivates me to be

more studious and organized

– My friends and colleagues, specially my good friends Carolina Valadares

and João Dutra. Carol convinced me to attend PUC-Rio and received

me in her house for the first month in Rio, which was the most difficult.

João helped me many times;

– The staff members of the Department of Informatics, specially professor

Hugo Fuks, who shared with me some of his creativity, and Regina Zanon,

who is so patient with the students;

– Professor Jean Pierre, who contributed to my research and helped me

with the last reviews of this dissertation;

– My research group, specially Andrew, Marx, Davy, and Roberto, who

shared with me some of their advanced academical experiences and

helped me a lot.

This work was supported by the Laboratory of Software Engineering

(LES) at PUC-Rio. Our thanks to CNPq, CAPES, FAPERJ and PUC-Rio for

their financial support.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Abstract

Nascimento, Nathalia Moraes do; Lucena, Carlos José Pereira
de (Advisor). FIoT: An Agent-Based Framework for Self-
Adaptive and Self-Organizing Internet of Things Applica-
tions. Rio de Janeiro, 2015. 102p. MSc. Dissertation — Departa-
mento de Informática, Pontif́ıcia Universidade Católica do Rio de
Janeiro.

The agreed fact about the Internet of Things (IoT) is that, within

the coming years, billions of resources, such as cars, clothes and foods will

be connected to the Internet. However, several challenging issues need to

be addressed before the IoT vision becomes a reality. Some open problems

are related to the need of building self-organizing and self-adaptive IoT

systems. To create IoT applications with these features, this work presents a

Framework for Internet of Things (FIoT). Our approach is based on concepts

from Multi-Agent Systems (MAS) and Machine Learning Techniques, such

as a neural network and evolutionary algorithms. An agent could have

characteristics, such as autonomy and social ability, which makes MAS

suitable for systems requiring self-organization (SO). Neural networks and

algorithms of evolution have been commonly used in robotic studies to

provide embodied agents (as robots and sensors) with autonomy and

adaptive capabilities. To illustrate the use of FIoT, we derived two different

instances from IoT applications: (i) Quantified Things and (ii) Smart Cities.

We show how flexible points of our framework are instantiated to generate

an application.

Keywords
Multi-Agent System; Self-Organization; Self-Adaptation; Internet of

Things; Machine Learning.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Resumo

Nascimento, Nathalia Moraes do; Lucena, Carlos José Pereira
de. FIoT: Um Framework Baseado em Agentes para
Aplicações Auto-Organizáveis e Autoadaptativas de In-
ternet das Coisas. Rio de Janeiro, 2015. 102p. Dissertação de
Mestrado — Departamento de Informática, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

A ideia principal da Internet das Coisas (IoT) é conectar bilhões de

coisas à Internet nos próximos anos, a exemplo de carros, roupas e comi-

das. Entretanto, muitos problemas precisam ser resolvidos antes que essa

ideia possa ser concretizada. Alguns desses problemas estão relacionados à

necessidade de construir sistemas para IoT que sejam auto-organizáveis e

autoadaptativos. Este trabalho, portanto, apresenta a elaboração do Frame-

work para Internet das Coisas (FIoT), que oferece suporte ao desenvolvi-

mento de aplicações para IoT com essas caracteŕısticas. Ele é baseado nos

paradigmas de Sistemas Multiagente (SMA) e algumas técnicas abordadas

em Aprendizado de Máquina, a exemplo de redes neurais e algoritmos evo-

lutivos. Um agente pode ter algumas caracteŕısticas, como autonomia e

sociabilidade, que tornam SMAs compat́ıveis com sistemas que requerem

auto-organização. Redes neurais e algoritmos de evolução vêm sendo comu-

mente usados nos estudos de robótica, no intuito de prover autonomia e

adaptação à agentes f́ısicos (ex.: robôs, sensores). Para demonstrar o uso

do FIoT, dois grupos de problemas em IoT serão instanciados: (i) Cidades

Inteligentes e (ii) Quantificação de Coisas.

Palavras–chave
Sistema Multiagente; Auto-Organização; Autoadaptação; Internet

das Coisas; Aprendizado de Máquina.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Contents

1 Introduction 11
1.1 Problem Statement 13
1.2 Out of Scope 14
1.3 Objectives 14
1.4 Proposed Solution 15
1.5 Contributions 15
1.6 Dissertation Organization 16

2 Background and Related Work 17
2.1 The Internet of Things 17
2.2 Multi-agent System 18
2.3 Evolutionary Algorithms 23
2.4 Artificial Neural Network (ANN) 25
2.5 Evolutionary Robotics 31
2.6 Self-adapting and Self-Organizing Systems 33
2.7 MAS for IoT 37

3 FIoT: Framework for Internet of Things 39
3.1 Domain Analysis 40
3.2 Agent-Based Model 41
3.3 Central Idea for the Framework Design 42
3.4 Details of FIoT 49
3.5 How to instantiate FIoT: Technical Details 51

4 Evaluation: Illustrative Examples 58
4.1 FIoT’s Instances 58
4.2 Quantified Things 59
4.3 Smart City 70
4.4 A Future Instance: Quantified US 83
4.5 How the generated applications adhere to FIoT 85

5 Conclusion 89
5.1 Evaluation and Future Works 90

6 Bibliography 92

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



List of Figures

2.1 Arduino Yún (Arduino, 2014). 18
2.2 A Thing. 18
2.3 The diagram of a generic agent provided by authors in (Russell and

Norvig, 1995) [p.32]. 19
2.4 Modeling an Embodied Agent based on Figure 2.3 and the literature

description provided in this section. 23
2.5 A generic diagram of an evolutionary algorithm. 24
2.6 Block diagram representation of nervous system (Haykin, 1994).

Pg.28. 25
2.7 The model of a neuron (Haykin, 1994). Pg.33. 26
2.8 Multilayer feedforward network with two hidden layers (Haykin,

1994). Pg.181. 28
2.9 Recurrent network (Haykin, 1994). Pg.46. 29
2.10 Evolving a neural network. Adapted from Floreano and Mattiussi

(2008, p.317). 31
2.11 Evolving Embodied Agents. 33
2.12 IBM Control Loop to generate autonomous elements (Jacob et al.,

2004). Pg 24. 35

3.1 An agent-based model to generate IoT applications. 41
3.2 Activity diagram of GodAgent. 43
3.3 Control loop provided by framework in (Neto et al., 2009). 43
3.4 Control loop provided by the FIoT framework. 44
3.5 Activity diagram of the Adaptive Agent. 45
3.6 Activity diagram of ObserverAgent. 46
3.7 Activity diagram of a Thing. 47
3.8 Use Case Diagram. 49
3.9 Packages of the FIoT project. 50
3.10 Class diagram of FIoT - Agents. 50
3.11 Class diagram of FIoT - Behaviors. 51
3.12 Class diagram of FIoT - Controllers. 51
3.13 Examples of controllers registered by the system developer via text

files. 55
3.14 Configuring the execution of a genetic algorithm. 56

4.1 Different configurations to create FIoT’s instances. 59
4.2 The model for individual tracking in QT systems. 62
4.3 Bananas from the same bunch after being stoted in different

conditions. 64
4.4 An instance of FIoT to create ”Quantified Things” Instances. 65
4.5 Set of sensors. 65
4.6 Example of scenarios. 66
4.7 Introducing the IoT paradigm for transportation system analysis

(Möller, 2014). Pg. 104. 70

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



4.8 A FIoT instance for creating a smart controller for homogeneous
things. 71

4.9 Traffic elements. 72
4.10 Modeling a scenario as a graph. 72
4.11 Adaptive Agent’s Neural Controller. 74
4.12 Performing an adaptive process to ajust the Traffic Neural Con-

troller weights. Figure adapted from (Nolfi and Gigliotta, 2010).
P.7. 75

4.13 Simulation Urban Road Network. Adapted from Waze (2014)
(MOBILE, 2014). 76

4.14 The configuration file for the evolutionary algorithm. 77
4.15 Simulation Results - Best Fitness. 77
4.16 Comparison of the FIoT approach and conventional systems in the

first scenario. 79
4.17 The second scenario - Copacabana - RJ -BR. The car 9’s route.

Adapted from Waze (2015) (MOBILE, 2014). 79
4.18 Comparison of the FIoT approach and conventional systems in the

second scenario. 80
4.19 Agent’s Neural Controller. 80
4.20 Comparison of the evolved agents approach and conventional sys-

tems in the first scenario. 81
4.21 Comparison of the evolved agents approach and conventional sys-

tems in the second scenario. 82
4.22 Relation between gases emitted and diagnoses. 84
4.23 Future Instance: QS model. 85
4.24 Future Instance: QU model. 86
4.25 How the generated applications fill the main variable parts of FIoT. 87
4.26 A comparison between Quantified Self and Quantified Us instances’

design. 88

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



List of Tables

3.1 How the model and FIoT meet the IoT requirements. 48

4.1 Specific requirements for “Quantified Things” applications. 63
4.2 Experimental Description 66
4.3 Initial Database for neural network training. 67
4.4 Results of backpropagation execution 68
4.5 New data to also be used in backpropagation. 69
4.6 Instance I: Flexible Points 86
4.7 Instance II: Flexible Points 87

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



1
Introduction

Internet of Things (IoT) is a broad concept. In general, IoT refers to

a global infrastructure of networked physical things interconnected through

Internet (Rodrigues et al., 2012; Park et al., 2013). The central perspective

is that, within the coming years, billions of resources, such as cars, lamps,

foods and factory machinery will be connected to the Internet and share

information about themselves and their environments. IoT will make it possible

to develop a variety of application scenarios, such as smart homes and cities, e-

health, environmental monitoring and many others. Smart traffic management

is an example of a smart city application, which aims at providing intelligent

transportation through real-time traffic information and path optimization

(Gubbia et al., 2013).

According to the authors in (Atzori et al., 2010), the potentialities offered

by IoT make it possible to develop a huge number of applications, a very small

part of which is currently available to our society. Most IoT applications are

not developed yet because they require scalability beyond millions of devices

where centralized solutions could exceed their boundaries. Further, they cannot

have fixed deployments or fixed systems configurations, as the environment is in

continuous transition (Fortino and Trunfio, 2014). For example, an autonomous

application for traffic management depends on the abilities of the traffic light

controllers to adapt to changing traffic situations (Rochner et al., 2006). We can

observe that traffic changes according to different time-scales. As the authors

describe in (Rochner et al., 2006), a typical workday can be divided into several

periods of different traffic situations, including two peak periods with high

demands due to commuter traffic.

The truth is that several challenging issues still need to be addressed

before the IoT vision becomes a reality (Velloso et al., 2010; Bandyopadhyay

and Sen, 2011; Atzori et al., 2010). A possible further complication is the fact

that the vast majority of present research in universities and industry is paying

more attention to operational technology, in order to solve problems related

to limited Internet traffic capacity, communication protocols, and network

architecture (Lopez and Pérez, 2012). For example, the authors in (Gubbia

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 1. Introduction 12

et al., 2013) discuss the open challenges and future directions in the Internet

of Things. They present global addressing schemes, cloud storage, and wireless

power as the key elements of the current IoT research. In their opinion, self-

adaptive system of systems is an example of the key application outcomes that

are only expected in the next decade.

In (Fortino and Trunfio, 2014), one of the few works that bring a non-

operational IoT approach, the authors relate some open issues which are

needed to build elements capable of copping with the changing environments

and taking appropriate decisions autonomously. Therefore, they discuss about

the importance of creating autonomous and adaptive IoT systems. In an

effort to call attention to these issues, a new terminology associated with

IoT is emerging: Smart Objects (SOs) or Smart Things. They represent

loosely coupled and decentralized systems of cooperating objects. Editors

in (Fortino and Trunfio, 2014) discuss smart objects and define them as

an autonomous, physical digital object augmented with sensing/actuating,

processing, interpretation, storing, and networking capabilities.

IoT is a new and exciting approach, and will soon be adopted by the

market (Gubbia et al., 2013). To define new frameworks/middlewares (Beydeda

et al., 2005; Sommerville, 2004) for the rapid prototyping, there is a need to

facilitate the development process of SOs. Frameworks are general software

systems (i.e. systems that consist of abstract and concrete classes), which can

be adapted or extended to create more specific applications. According to Ian

Sommerville (Sommerville, 2004), “the sub-system is implemented by adding

components to fill in parts of the design and by instantiating the abstract

classes in the framework.”

Meanwhile, a few framework/middleware approaches have been proposed

to support the creation of a SO-based IoT infrastructure (Fortino et al., 2012).

The authors in (Fortino et al., 2014) analyze the existing approaches and

discuss their limit in the management of a vast number of cooperative SOs

– none of them presented the design of any complex application scenario

(i.e. using a vast number of cooperative things, such as traffic scenarios). For

example, the authors in (Fortino et al., 2013) developed a middleware for smart

objects and affirm that the support of distributed computing entities is the key

and novel feature of their approach. Nonetheless, to illustrate the use of their

architecture, they present a simple case study, which refers to a smart office

environment constituted by only two cooperating things. These works do not

show efficiency in complex scenarios, where things must cope with a changing

environment and where a sophisticated organization system is required.

According to the authors in (Fortino et al., 2014), to develop SO-based

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 1. Introduction 13

IoT systems, novel software engineering methodologies for dynamic systems

need to be defined. Due to proliferation of the Internet and the spread of

mobile devices, an increasing number of applications are suitable for using

self-organization to fulfill their goals, such as manufacturing control and traffic

management (Serugendo et al., 2005). Accordingly, we aim at facilitating the

development of smart systems within the Internet of Things domain, providing

them with more autonomy, self-adaptive and self-organizing properties. In

order to do this, we first propose a model to create smart things. Thus, we

present a framework, named “Framework for Internet of Things” (FIoT), as

an effort to facilitate the process of creation of smart things.

The objective of FIoT is to facilitate the creation of diverse applications,

such as controllers for car traffic, factory machines, public lighting, and smart

homes. Hence, the framework allows the creation of autonomous controllers

for groups of homogeneous things which can be connected to the Internet.

To illustrate the use of FIoT, we will present examples from two of the

Internet of Things applications: (i) Quantified Things and (ii) Smart Cities.

The next subsections of this chapter aim at presenting our work motivation

and objectives, besides describing how this document is organized.

1.1
Problem Statement

A few years ago, the authors in (Kephart and Chess, 2003) called the

global goal to connect trillions of computing devices to the Internet the

nightmare of ubiquitous computing (Lyytinen and Yoo, 2002). The reason

for that is that to reach this global goal requires a lot of skilled Information

Technology (IT) professionals to create millions of lines of code, and install,

configure, tune, and maintain these devices. According to the author in

(Kephart, 2005), in few years, IT environments will be impossible to be

administered, even by the most skilled IT professionals.

Predicting the emergence of this problem, in 2001 the IBM company

suggested the creation of autonomic computing (Horn, 2001). IBM recognized

that the only viable solution to resolve this problem was to endow systems

and the components that comprise them with the ability to manage them-

selves in accordance with high-level objectives specified by humans (Kephart,

2005). Therefore, IBM proposed systems with self-developed capabilities. The

company emphasized the need of automating IT key tasks, such as coding,

configuring, and maintaining systems, based on the progress observed in the

automation of agriculture’s manual tasks.

Other IT companies agreed with IBM and then generated their own man-

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 1. Introduction 14

ifests, such as Hewlett-Packard (HP, 2003) and Microsoft (Microsoft, 2004).

However, the IT Industry interest in the development of self-management de-

vices is not evident yet. As a result, not only the goal of the Internet of Things

to connect billions of devices to the Internet has not been reached, but we

have also been experiencing the problems previously listed by the authors in

(Kephart and Chess, 2003).

The truth is that companies and researchers are so busy competing to

define the official protocol and architecture for the Internet of things, that very

few researches to provide a sophisticated control to manage all these billions of

things have been developed. As a result, there is a lack of software to support

the development of a huge number of different IoT applications.

1.2
Out of Scope

As the development of smart objects is part of a broader context, a set

of related aspects will be left out of the scope of this work. Thus, the following

approaches are not directly addressed by this work:

– Security

– Ontology

– Protocols

– Scalability

1.3
Objectives

Our objective in this dissertation is to propose a feasible solution through

a general software system for providing self-organizing and self-adaptive be-

haviors for Internet of Things applications. To this end, our approach consists

in:

– Developing Autonomous things:

– Things that are able to cooperate and execute complex behavior

without the need for centralized control to manage their interaction.

– Things that are able to have behavior assigned at design-time

and/or at run-time.

– Providing mechanisms to automatically recognize and control au-

tonomous things in the environment;

– Providing mechanisms to allow things to self-adapt and to improve their

own behavior;

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 1. Introduction 15

1.4
Proposed Solution

To reach these objectives, we propose the following directions:

1. To make a generic software basis for IoT, we propose the development

of a framework. The framework approach can be used to rise the

common requirements among IoT applications and implement a reusable

architecture (Markiewicz and Lucena, 2001).

2. To create autonomous things and a distributed control, we decided to

model the framework based on a multi-agent approach. According to the

authors in (Cetnarowicz et al., 1996), the active agent was invented as

a basic element from which distributed and decentralized systems could

be built. In our approach, we consider the use of embodied agents, which

is typically used to model and control autonomous physical objects that

are situated in actual and complex environments (Steels, 2004).

3. To control the things, we choose a control architecture based on artificial

neural networks. A neural network is a well known approach to provide

dynamically responses and automatically create a mapping of input-

output relations (Haykin, 1994). In addition, it is commonly used as

an internal controller of embodied agents (Marocco and Nolfi, 2007).

4. To make things self-adaptive, we propose using various Machine Learn-

ing (ML) techniques, notably supervised learning and evolutionary algo-

rithms.

1.5
Contributions

Our contributions are multifold:

1. A multi-agent software architecture (a framework) to construct IoT

applications with self-adaptive agents monitoring and controlling the

things and their interactions.

2. Instances of this framework to two types of IoT applications:

(a) Prediction application, where things may self predict its condition.

For this purpose, we proposed a new approach of IoT applications

in this work, named “Quantified Things”. The overall idea of

Quantified Things applications is to deliver a way of incorporating

the small data generated by each thing into larger datasets to get

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 1. Introduction 16

more meaning out of these data. A thing, equipped with sensors,

can be monitored and can record specific features regarding its

behavior. Then it can populate a cloud database in order to provide

individual- and collective-level analyses.

(b) Control application, a decentralized control for a collection of

homogeneous things. For a simulated car traffic application, we

show how to instantiate the framework to create autonomous and

dynamic controllers for traffic lights.

3. Design of an adaptive agent based on a generic neural network architec-

ture which accepts two types of adaptation:

(a) Supervised learning, via back-propagation algorithm, to support

classification and prediction (used in 2a application)

(b) Evolutionary algorithm to discover control policies (used in 2b

application)

1.6
Dissertation Organization

In addition to the Introduction, this dissertation contains four more

chapters, as follows:

Chapter 2 provides a background of the main concepts used in our work.

Chapter 3 describes the proposed framework, FIoT and its development. In

Chapter 4, we present the experiments setup. Finally, the chapter 5 provides

our conclusions and future works.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



2
Background and Related Work

In this chapter, we first provide a brief introduction to the Internet of

Things, which is the domain of this research project. Next, we define some

concepts involved in our proposed solution, explaining our main motivations

for using them. In particular, we briefly describe some definitions and advan-

tages of (i) Multi-agent System (MAS), (ii) Self-Adaptive and Self-organizing

systems (SASO), and some artificial intelligence techniques, such as (iii) neural

networks and (iv) evolutionary algorithms.

Finally, we provide an overview of frameworks in the literature while

addressing the idea of mixing Artificial Intelligence and Internet of Things

concepts, especially those with focus on multi-agent systems.

2.1
The Internet of Things

The Gartner Company (Stamford, 2014) promotes annually a research

to investigate the technology trends in the world. According to recent research

results, the Internet of Things is one of the greatest technological revolutions in

recent years. In the next years, there will be more and more objects connected

to the Internet, which can be monitored and controlled independently. As

a result, the tendency is to substitute centralized computing for distributed

computing.

Different kinds of low-cost microelectronics with high potential to connect

to the Internet have been quickly emerging. They are the key to the Internet

of Things, which makes it possible for the physical world to interface with

the Internet (Pfister, 2011). We can also notice a popularization of these

microelectronics - they are not only cheaper, but also easier to handle. The

Arduino (Arduino, 2014) is one of the electronic platforms that has been

allowing microcontroller boards to be handled by anyone. It promotes the

development of electronic platforms based on the Open-Source Hardware

(referring to the principles of the Open-Source Software - for more information,

see (Jaeger and Metzger, 2002)). Figure 2.1 illustrates the Arduino Yún,

which is the Arduino model used in our work. See (Arduino, 2014) for more

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 18

information about Arduino boards.

Figure 2.1: Arduino Yún (Arduino, 2014).

In the IoT context, a thing is an object provided with an IP address and

the ability to transfer data over a network. For example, it can be a person

wearing a heart monitor implant or a farm animal carrying a biochip (Vaidya et

al.; Vimala and Rajaram, 2014). Accordingly, Figure 2.2 illustrates the concept

of a “Thing” that we have been used in this dissertation. In this work, a thing

consists of a device linked to an object with the purpose of monitoring or

controlling it. A device makes it possible that an object in the environment

to interface with the Internet and an application system. A device consists of

sensors, actuators and a microcontroller.

Figure 2.2: A Thing.

2.2
Multi-agent System

The aim of this section is to provide an understanding of what agents

are, and some of the properties associated with their usability. The authors

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 19

in (Russell and Norvig, 1995) define “agent” as “anything that can be

viewed as perceiving its environment through sensors and acting upon

that environment through effectors.” Accordingly, they describe the sensors

and actuators of different agent types. For example, a human agent has eyes,

ears, and other organs for sensors, and hands, legs, mouth, and other body

parts for effectors. A robotic agent uses cameras and infrared range finders as

sensors and various motors as effectors. A software agent has “strings encoded”

as its sensors and actuators. They provide an abstract view of an agent, which

is illustrated in Figure 2.3. It shows the action output generated by the agent

in order to affect its environment.

Figure 2.3: The diagram of a generic agent provided by authors in (Russell
and Norvig, 1995) [p.32].

An agent can inhabit a real or simulated environment. The environments

can differ taking other properties into account. For example, if the environment

can change while an agent is deliberating, then we say the environment is

dynamic for that agent; otherwise it is static. Different environment types

require different agent in order to deal with them effectively (Russell and

Norvig, 1995). The most general properties of an agent are (Wooldridge and

Jennings, 1995):

– Autonomy: an agent functions without intervention. It has the control

over own actions and internal state;

– Reactivity: it perceives its environments and responds to changes;

– Pro-activeness: it acts in anticipation of future goals (goal-directed

behavior);

– Social ability: it interacts with other agents (and even humans).

Various other attributes are discussed in the context of agency

(Wooldridge and Jennings, 1995). For example:

– Mobile: an agent has the ability to move around an electronic network

(White, 1994);

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 20

– Situated: an agent experiences the environment using sensors and acts

using effectors (Russell and Norvig, 1995);

– Embodied: an agent has a body and experiences the world directly

(Brooks, 1995). According to the authors in (Brooks, 1995), disembodied

systems concentrate on programming intellectual activities like chess,

while the embodied approach aims at equipping a digital computer with

the best sense organs (e.g. “organs” to move, talk, hear, touch, and see).

We describe it better in Section 2.2.2;

– Awareness: an agent has the ability of sensing its environment in different

ways, and take decisions accordingly;

According to the authors in (Wooldridge, 2009), a collection of interacting

agents is a Multi-Agent System (MAS). Therefore, multi-agent systems can be

used to model complex and dynamic real-world environments, which involves

a vast number of entities (e.g. simulation of societies) (Poslad, 2007). It is a

useful paradigm for managing large distributed information handling systems

(Marzo et al., 2004).

Multi-agent systems have been applied to a wide range of application

types, including e-commerce, human-computer interfaces, network control, air

traffic control, and diagnosis (Lucena, 2004; Pěchouček and Mař́ık, 2008).

2.2.1
JADE

The Java Agent DEvelopment Framework (JADE) is a Java software

framework implemented to facilitate the development of multi-agent systems

(Telecom, 2015). According to the authors in (Pěchouček and Mař́ık, 2008),

JADE is a leading open-source agent development environment on the market

and some of the existing MAS applications and prototype systems use it.

JADE implements the Foundation for Intelligent Physical Agents (FIPA)

specifications that represent a collection of standards for the development of

agent-based systems (FIPA, 2015). One of these standards is the Agent Com-

munication Language (ACL) (FIPA, 2015), a protocol for agent communica-

tion. It allows the development of an interoperability communication structure,

which agents can execute on different platforms and exchange information (Bel-

lifemine et al., 2007; Bellifemine et al., 2010).

However, JADE can only be used to implement agents to execute in Java-

compatible systems (e.g. Windows, Android) (Bellifemine et al., 2010). Thus, a

JADE agent cannot be directly deployed in an Arduino microcontroller board,

for example, since it gives support only to the development of C-language

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 21

programs (Arduino, 2014). Probably, in the future will be possible to install

the Java Virtual Machine (JVM) in a microcontroller board as an Arduino.

Another solution is to investigate FIPA platforms for the development of C++

agents, such as Mobile-C (Chen et al., 2006). Thus, an agent could be deployed

in an Arduino and communicate with a JADE software agent through ACL

messages.

As we decided to work only with JADE, that is a well-known framework

for agent development, we created a software layer to make it possible for a

JADE multi-agent system to interface with Arduino boards via the Internet.

2.2.2
Embodied Agents

There is a growing acknowledgment in the artificial life and artificial

intelligence communities about the importance of investigating systems’ bodies

before understanding and modeling their cognition (Pfeifer and Bongard,

2006). Imagine you want to build a smart fireplace that can decide whether

to light itself or not. First, you need to define the sensors and actuators of

this fireplace. Will it have a temperature sensor? And what about a presence

sensor? Will it have actuators to control the light intensity? The type of sensors

and actuators that your fireplace received directly affects the behaviors that it

can have.

According to the authors in (Brooks, 1995), “only an embodied intelligent

agent is fully validated as one that can deal with the real world.” The embodied

agents have a body and are physically situated, that is, they are physical agents

interacting not only among themselves but also with the physical environment.

They can communicate among themselves and also with human users. Robots,

wireless devices and ubiquitous computing are examples of embodied agents

(Steels, 2004). According to the authors in (Steels, 2004), a robot can be seen

as a software agent controlling a physical body. For example, the author in

(Wooldridge, 2009) describes the robot Stanley (i.e. an unmanned ground

vehicle navigation developed by authors in (Thrun et al., 2007)) as “an

autonomous agent embodied in a car.” The software architecture of

Stanley’s control system is organized into six layers. We provide a briefly

description of the main layers below (Wooldridge, 2009):

– Sensor interface layer: Stanley is equipped with a wide range of sensors

apparatus;

– Perception layer: Stanley’s collected data is translated into the internal

models used to represent Stanley’s environment. The state of the ve-

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 22

hicle is modeled in terms of 15 variables, relating to position, velocity,

orientation, accelerometer, and gyro;

– Planning and control layer: path planning, steering, and brake control;

– Vehicle interface layer: the interface between the control system and the

actuator controls.

The author in (Wooldridge, 2009) says that the most of effort in building

Stanley went into the perception layer, the layer responsible for making the

relation between the sensors and the associated techniques to interpret sensor

data. This complexity is not a particular problem of physical agents. The

authors in (Russell and Norvig, 1995), for example, supports the idea of

specifying which action an agent ought to take in response to any given percept

sequence to provide a design for an ideal agent. However, they argue that to

create this specifications could provide an infinite list for most agents.

In order to face the problem of perception, a strategy that has been

commonly applied on the development of physical agents by robotic researchers

is the use of artificial neural networks (i.e. an artificial intelligence technique

to encode a mathematical function that establishes a relation between a set

of inputs and a set of outputs. See a detailed description in the section 2.4)

(Marocco and Nolfi, 2007; Nolfi and Floreano, 2000; Floreano and Mattiussi,

2008). In accordance with the benefits of using neural networks, the Laboratory

of Artificial Life and Robotics (Parisi and Nolfi, 1994) (Nolfi, 1995) defines

embodied agents as agents that have a body and are controlled by an artificial

neural network. In order to provide self-organizing capabilities, these agents

use adaptive techniques (i.e. evolutionary techniques) to adapt to their task

environment.

Furthermore, according to the authors in (Zahedi and Ay, 2013) and in

(Polani, 2011), the embodiment can be seen as a a two-way filter layer between

the brain and the environment. First, the embodiment filters the external world

and determines how the brain perceives it. Second, the embodiment translates

commands emitted by the brain and expresses them as observable behaviors.

In Figure 2.4, we illustrated an embodied agent to be used in our

applications, following the above description. According to this illustration,

the body is a microcontroller connected to the Internet; it also contains some

sensors and actuators. While the former allows the collection of environmental

information, the latter allows the performance of some actions, such as to

activate a specific environmental component and emit communication signals.

Through the Internet, the “brain” and body can communicate. A soft-

ware agent contains the “brain” that is an encoded neural network. The neural

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 23

Figure 2.4: Modeling an Embodied Agent based on Figure 2.3 and the literature
description provided in this section.

network outputs define the values to be set in the actuators. These outputs

are calculated according to the data collected by sensors and the encoded con-

figuration that the neural network is using.

2.3
Evolutionary Algorithms

Faced with the sophistication and adaptability provided by evolutionary

biological systems, computer scientists and engineers have felt motivated to

try to replicate these systems in the development of artificial systems. They

have been seeking to solve problems that are difficult to be solved by analytical

methods (Floreano and Mattiussi, 2008).

The artificial evolutionary algorithm is briefly defined as a collection of

individuals in a search space, where each is a different solution to a given

problem. A chromosome represents the individual, and the goal of the search

is to identify the one with the best genetic material. We measure the quality

(fitness) of each by a given fitness function, which measures how good that

particular individual is among the ability of the entire population. The fittest

individuals will have greater ability to reproduce and could thus result in the

reduction of the least fit individuals.

The different individual sequence of genes can be in various formats as

binary, character strings, numeric values, and others. We represent the genetic

material of an individual, of that search space, by a vector m with p positions:

p = x1, x2, x3, · · · , xm , where each x represents a gene also known as

solution variable.

Figure 2.5 illustrates a generic diagram of an evolutionary algorithm.

First, it is necessary to form an initial search space, represented by the first

generation.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 24

Figure 2.5: A generic diagram of an evolutionary algorithm.

According to the authors in (Floreano and Mattiussi, 2008), the size of

the population for experiments that require interaction with a real environ-

ment normally is less than one hundred. Typically, the genotype of the first

individuals are created randomly. The goal of this process is to ensure diver-

sity for the initial generation. In the case of binary representation, for example,

each genotype is created by a random sequence of 1s and 0s. The quality of

the generation is measured based on an individual fitness average.

While the algorithm does not find a generation to meet the stopping

criterion, new generations are being formed. The stopping criterion can be an

individual performance criteria, by fitness function, the average fitness of all

individuals, or the range of the maximum number of generations formed during

the evolutionary process.

Natural selection preserves the best-adapted individuals of a generation,

giving them a greater chance to procreate. Following this concept, the algo-

rithm should select the best parents of the current generation, so that they

can transfer their genetic material to the next generation. Thus, the first step

of the reproduction process is the selection. There are several ways to perform

this selection process. Among the best known are the roulette, selection by a

tournament, and by ranking (see (Floreano and Mattiussi, 2008)).

To avoid the loss of the best solution during evolution, one can use the

popular strategy of elitism. Elitism is a strategy of a composition of a new

population. The strategy maintains the n best-selected individuals in the new

generation, so that, one of their children have a copy of their genetic material.

When a generation does not meet the stopping criteria, among all possible

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 25

solutions to the problem it addresses, probably the best of their solutions is

not enough to solve it. Thus, it is necessary to apply genetic operators, so

that it is possible to introduce diversity in the population, and thus can insert

new solutions that search space. One of the operators is the crossover, which

generates a new individual from the combination of genetic material from two

or more individuals parents. The other is the mutation that generates new

individuals with a slightly changed genetic code from small random changes

caused by their genotype. For more details about the different types of selection

and genetic operators, see (Floreano and Mattiussi, 2008).

2.4
Artificial Neural Network (ANN)

There are some living organisms, such as the paramecium, that does not

have a neural network. They can eat, move toward the light and escape from

predators (as a simple reactive agent)(Floreano and Mattiussi, 2008). However,

bodies with a neural network have at least two advantages: selective transmis-

sion of signals among body parts (input-output mapping (Haykin, 1994)), and

adaptation through synaptic plasticity (Floreano and Mattiussi, 2008). The

block diagram of Figure 2.6 illustrates the input-output mapping process of

a human nervous system. It receives information from the environment, per-

ceives it, and makes appropriate decisions (Haykin, 1994). According to the

authors in (Haykin, 1994), “plasticity permits the developing nervous system

to adapt to its surrounding environment.” As a result, the interest of model-

ing the operation of the neural system to build intelligent machines has been

increasing.

Figure 2.6: Block diagram representation of nervous system (Haykin, 1994).
Pg.28.

The authors in (Haykin, 1994) provide the following definition of a neural

network viewed as an adaptive machine:

A neural network is a massively parallel distributed processor made

up of simple processing units, which has a natural propensity for

storing experiential knowledge and making it available for use. It

resembles the brain in two respects:

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 26

– Knowledge is acquired by the network from its environment

through a learning process.

– Inter-neuron connection strengths, known as synaptic weights,

are used to store the acquired knowledge.

Systems that use an Artificial Neural Networks (ANN) have been pre-

senting other properties beyond adaptivity, such as pattern recognition, per-

ception, and motor control (Haykin, 1994). An ANN consists of neurons and

connections (as well as in a biological neural network). To understand how a

neural network functions is necessary to understand these elements.

2.4.1
Artificial Neuron

According to the author in (Haykin, 1994), a neuron is an information-

processing unit that is fundamental to the operation of a neural network.

Figure 2.7 shows the model of a neuron, which forms the basis for designing

artificial neural networks.

Figure 2.7: The model of a neuron (Haykin, 1994). Pg.33.

This model identifies some basic properties of a neuron, as shown

(Haykin, 1994):

– A set of synapses or connecting links. Specifically, a signal xm at the

input of synapse m connected to neuron k is multiplied by the synaptic

weight Wkm. Unlike a synapse in the brain, the synaptic weight of an

artificial neuron may lie in a range that includes negative as well as

positive values.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 27

– An adder for summing the input signals, weighted by the respective

synapses of the neuron. The adder can add excitatory inputs or subtract

inhibitory inputs from other neurons connection (McCulloch and Pitts,

1943).

– An activation function for limiting the amplitude of the output of

a neuron. Typically, the amplitude range of the output of a neuron is

normalized and written as a unit closed interval [0,1] or alternatively

[-1,1].

– An externally applied bias, denoted by bk . The bias bk has the effect of

increasing or lowering the net input of the activation function, depending

on whether it is positive or negative, respectively. As shown in Figure 2.7,

the effect of the bias is accounted by adding a new input signal fixed at

+1, and adding a new synaptic weight equal to the bias bk .

In mathematical terms, Haykin (1994, pg.33) proposes the following

equations to describe a neuron k:

uk =
m∑
j=1

wkj × xj (2-1)

vk = uk + bk ; (2-2)

yk = f (vk); (2-3)

Where x1, x2, · · · , xm are the input signals; wk1,wk2, · · · ,wkm are the

synaptic weights of neuron k ; uk is the linear combiner output due to the input

signals; bk is the bias; f (.) is the activation function; and yk is the output signal

of the neuron.

The activation function, denoted by f (.), defines the output y of a neuron

k in terms of the induced local field v . According to Haykin (1994), the sigmoid

function is by far the most common form of activation function used in the

construction of artificial neural networks. The equation 2-4 presents an example

of a sigmoid function.

yk =
1

(1 + e−vk )
; (2-4)

See Haykin (1994, pg. 34) for more information about different types of

activation functions.

2.4.2
Network Architectures

An ANN is an arrangement of neurons. There are different classes of

network architectures (e.g. competitive networks, which can make use of a

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 28

Winner-Takes-All algorithm(WTA), recurrent, feedforward, etc. See a discus-

sion about them in (Haykin, 1994)). A widely used type is the feedforward

network. They contains an input layer and an output layer. The first consists

of sensory neurons that receive environmental stimuli. The second consists of

motor neurons, which are responsible for producing the network response (Flo-

reano and Mattiussi, 2008). A network may have one or more hidden layers,

which are composed of hidden neurons. The function of hidden neurons is to

intervene between the external input and the network output in some use-

ful manner (Haykin, 1994). These neural networks are commonly referred to

as multilayer perceptron (Haykin, 1994). Figure 2.8 illustrates a layout of a

multilayer perceptron with two hidden layers.

Figure 2.8: Multilayer feedforward network with two hidden layers (Haykin,
1994). Pg.181.

To determine the number and the size of the hidden layers is mostly a

matter of trial and error. However, there are heuristic techniques to establish

an optimal number of hidden neurons (Haykin, 1994). For example, the author

in (Kuurkova, 1992) proposes a technique to derive estimates of numbers of

hidden units based on properties of the function being approximated and the

accuracy of its approximation. Alternatively, some researches (Miller et al.,

1989; Belew et al., 1990) have been using evolutionary algorithms to design

the network topology automatically.

Another type of network class is the recurrent network. Recurrent net-

works distinguish themselves from feedforward netwoorks in that they have at

least one feedback loop. Feedback refers to a dynamic system whenever the

output of an element in the system influences in part the input applied to that

particular element (Haykin, 1994), as shown in Figure 2.9.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 29

Figure 2.9: Recurrent network (Haykin, 1994). Pg.46.

2.4.3
Adaptive Process

According to the auhtors in (Floreano and Mattiussi, 2008), adaptation

is a major feature of the nervous system. This allows the body to modify

and develop behaviors in order to maintain or improve their probability to

survive in dynamic and partially unknown environments. According to the

authors in (Yao, 1999), learning and evolution are two fundamental forms of

adaptation. There has been a great interest in combining learning and evolution

with artificial neural networks (ANNs) in recent years.

2.4.3.1 Learning Algorithm

According to Haykin (1995, p.46), “a major task for a neural network

is to learn a model of the environment in which it is embedded.” The

learning algorithm used to train the network is directly linked with the neural

network structure. After the learning step, the knowledge representation of

the surrounding environment is defined by the values taken on by the free

parameters (i.e., synaptic weights and biases) of the network (Haykin, 1994).

A learning algorithm can be supervised or unsupervised. In supervised

algorithms, the neural training process is performed using labeled examples.

In such cases, each example representing an input signal is paired with a

corresponding desired response. Algorithms for unsupervised learning, or self-

organized learning, do not provide a set of input-output pairs (Haykin, 1994).

According to Haykin (1994, pg. 414), “the purpose of an algorithm for self-

organized learning is to discover significant patterns or features in the input

data, and to do the discovery without a teacher.” According to the authors

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 30

in (Floreano and Mattiussi, 2008), the use of an evolutionary algorithm is an

alternative or complementary technique to unsupervised learning algorithms

for adapting a neural network. We describe a particular evolutionary self-

organized algorithm in section 2.4.3.

An algorithm that is commonly used to train multilayer perceptrons is

the error back-propagation algorithm (Haykin, 1994). Basically, error back-

propagation learning consists of two steps: a forward and a backward steps.

In the first one, an activity pattern (input vector) is applied to the sensory

nodes of the network. As a result, a set of outputs is produced. During the

forward step the synaptic weights of the networks are all fixed. During the

backward step, the synaptic weights are all adjusted in accordance with an

error-correction rule (Haykin, 1994). The adjustment of the synaptic weights

of the neurons in accordance with the error signal leads to an adaptive process

(Haykin, 1994). See a detailed description about back-propagation algorithm

in Haykin (1994, pg. 183).

According to Haykin (1994, pg. 200), there are some methods to improve

the back-propagation algorithm’s performance, such as to normalize the inputs.

However, he agrees with the following statement: “the design of a neural

network using the back-propagation algorithm is more of an art than a science

in the sense that many of the numerous factors involved in the design are the

results of one’s own personal experience.”

2.4.3.2 Evolutionary Neural Networks

Similar to unsupervised learning algorithms, evolutionary algorithms

have been commonly used for adapting neural networks without a teacher

(Floreano and Mattiussi, 2008; Floreano and Urzelai, 2000). According to the

authors in (Floreano and Mattiussi, 2008), there are at least two reasons for

using a evolutionary algorithm instead of a learning algorithm: 1) there are no

restrictions on the type of architecture; and 2) it is not necessary to take an

input-output mapping into account.

Evolutionary algorithms (EA) have been used to train neural networks, to

select features, and to determine the topology of the network. For the evolution

of a neural network, its characteristics are encoded in artificial genomes. A

genome is usually represented as a string of real or binary values, and evolved

according to a performance criterion. If the goal is only to train the neural

network, the genotype will encode only the value of synaptic weights (Floreano

and Mattiussi, 2008). The interested reader may consult more extensive papers

(Miller et al., 1989; Belew et al., 1990; Yao, 1999).

By using an evolutionary algorithm, a weight sequence represents the

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 31

genotype of an individual. One generation consists of a pool of individuals that

represent different network configurations (see the description of evolutionary

algorithms in section 2.3). Figure 2.10 illustrates a multilayer feedfoward

network and two candidates (individuals) for its weights sequence. We are

supposing that the weights are real values and can be written as a unit closed

interval [-3,3].

Figure 2.10: Evolving a neural network. Adapted from Floreano and Mattiussi
(2008, p.317).

For each weight sequence candidate, the algorithm evaluates the network

performance. The better individuals are selected to reproduce and create the

next generation.

2.5
Evolutionary Robotics

The use of evolutionary algorithms to train neural networks is commonly

applied to develop self-organizing robot swarms that are examples of embodied

agents (Floreano and Urzelai, 2000). By the Robotic Agents Literature, this

approach is known as Evolutionary Robotics (ER) (Marocco and Nolfi, 2007;

Nolfi and Floreano, 2000; Floreano and Mattiussi, 2008; Massera et al., 2013;

Nolfi and Parisi, 1997; Nolfi and Floreano, 1998; Floreano et al., 2007). The

primary goal of ER is to provide ways of automatically synthesizing intelligent

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 32

autonomous robot systems (Nolfi and Floreano, 2000). According to the

authors in (Nelson et al., 2007), the evolutionary robotic has the potential

to lead to the development of robots that can adapt to uncharacterized

environments, which may be able to perform tasks that human designers do

not thoroughly understand.

Most of these experiments presents a population of agents equipped

with a sensory-motor system, including wireless sensors, and a cognitive

apparatus, which evolves a self-organizing communication system and use

their communication abilities to solve a given problem (VIDE and Nolfi,

2006). An example is the work by Marocco and Nolfi entitled “Emergence

of Communication in Embodied Agents Evolved for the Ability to Solve a

Collective Navigation Problem” (Marocco and Nolfi, 2007). Similarly, authors

in (Floreano et al., 2007) established an experimental system with colonies of

ten robots that could forage in an environment containing a food and a poison

source. This study showed that ER has a potentially critical role in evolving

a sophisticated communication systems in collections of embodied agents, and

in designing efficient groups of cooperative agents.

2.5.1
Evolving Embodied Agents

Based on the description of Evolutionary Robotics algorithm provided

by authors in (Nolfi and Floreano, 2000), we prepared a diagram to illustrate

the process of evolving embodied agents through the ER method, as depicted

in Figure 2.11.

There are two ways of evolving agents’ neural network controller at run-

time: embodied evolution and evolution in simulation with transfer to reality

(Nelson et al., 2007). The former uses physical devices during the evolutionary

process: the encoded configurations of neural network are loaded into embodied

agents’ microcomputers, they are tested, and the associated candidates’ fitness

are evaluated based on the performance of the real devices. By using physical

devices during the evolutionary process could be so slow in real-time; otherwise

this procedure insures that the controllers can function in real devices. In

addition, the evolutionary training process can produce bad configurations for

the neural network, and consequently generate a serious problem in particular

cases such as a traffic urban controller. An alternative to embodied evolution is

to evolve the controllers in simulated agents living in simulation environments

(Nelson et al., 2007), and then transfer the evolved neural network to physical

agents that are situated in a real world.

The ER method provides the emergence of features that have not been de-

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 33

Figure 2.11: Evolving Embodied Agents.

fined at design-time, including a sophisticated self-organizing communication

system. While in traditional approaches the desired behaviors are accomplished

intuitively by the designer, in evolutionary robotics this is often the result of

an adaptation process that usually involves a larger number of interactions

between the system and the environment (Nolfi and Floreano, 2000).

2.6
Self-adapting and Self-Organizing Systems

The increasingly computerization of our environment has led software

engineering to look for inspiration in diverse fields, such as robotics, artificial

intelligence, or biology to find new ways of designing and managing systems

(Babaoglu and Shrobe, 2007). As a result, self-adaptation (SA) and self-

organization (SO) have emerged as two promising interrelated approaches

(Babaoglu and Shrobe, 2007; Babaoglu and Shrobe, 2015). The goal of self-

organizing and self-adaptive systems (SASO) is to reduce operation and design

cost in the development of dynamical systems (Hudson and Denzinger, 2014).

There is a growing conference series to investigate self-organizing and

self-adaptive systems, which is in its ninth edition (Babaoglu and Shrobe,

2015). We consider here the definitions of self-adaptive and self-organizing

systems that have been used by this conference editors, as follows (Babaoglu

and Shrobe, 2007; Babaoglu and Shrobe, 2015):

Self-adaptive systems work in a top-down manner. They evaluate

their own global behavior and change it when the evaluation

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 34

indicates that they are not accomplishing what they were intended

to do, or when better functionality or performance is possible. Such

systems typically operate with an explicit internal representation

of themselves and their global goals.

Self-organizing systems work bottom-up. They are composed of

a large number of components that interact according to simple

and local rules. The global behavior of the system emerges from

these local interactions, and it is difficult to deduce properties

of the global system by studying only the local properties of

its parts. Such systems do not use internal representations of

global properties or goals; they are often inspired by biological or

sociological phenomena.

As explained by the editors in (Babaoglu and Shrobe, 2007), self-adaptive

systems are top-down and self-organizing are bottom-up. Thus, these systems

seem to be different and the creation of self-adaptive and self-organizing

(SASO) systems resulted in new challenges (Hudson and Denzinger, 2014).

For example, “how are intermediate-level structures formed which leverage

micro-level behavior to achieve desirable macro-level outcomes?” (Babaoglu

and Shrobe, 2015).

The authors in (Serugendo et al., 2007) discuss a generic framework for

the development of self-adaptive and self-organizing systems. They listed some

key requirements to provide a system with self-* properties and behaviors (e.g.,

self-organizing, self-adapting, etc. See the description of more self-* properties

in (Horn, 2001)). We selected some of these requirements to use as a basis for

the development of our model, as follows (Serugendo et al., 2007):

– Autonomous individual components: self-* behaviors arise from au-

tonomous system components’ interaction. In SO systems, such com-

ponents can be agents, peers or cars. In SA systems, such components

can be autonomic managers and any element of the supporting infras-

tructure.

– Self-awareness: Self-* properties arise from the capability of the sys-

tem or individual components to sensor an environment and identify by

themselves any new condition, failure or problem. Self-awareness requires

“sensing” capabilities and triggers “reasoning” and “acting.” SO systems

sense their environment in different ways (e.g., configurations and neigh-

bours) and take decisions accordingly (e.g., changing role or directions).

SA systems are provided with monitoring, planning and plan execution

capabilities.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 35

– Behavior guiding and bounding: SO systems have their own local rules.

SA systems have both local and global rules. For guiding the system to-

wards optimal functioning, it is important to limit the system actions,

but freely allowing decentralized adaptive behavior of individual compo-

nents inside the boundaries.

To meet these requirements and develop a self-adaptive and self-

organizing system, the authors in (Serugendo et al., 2007) propose the use of

a set of technologies and software architecture infrastructures (see (Serugendo

et al., 2007)). In particular, we are interested in the proposal of integrating

a control and feedback loop and a Coordination modules. The former

is based on the IBM control loop (2004), which is an architecture to provide

systems with autonomy and self-awareness (Jacob et al., 2004), as shown in

Figure 2.12.

Figure 2.12: IBM Control Loop to generate autonomous elements (Jacob et
al., 2004). Pg 24.

Based on notions of (M)onitoring, (A)nalyzing, (P)lanning (also Decision

Making), (E)xecuting decision and a (K)nowledge base, the IBM control loop

is known as MAPE-K. It has become a base model from which it is possible

to extend self-adaptive (Neto et al., 2009) and/or self-organizing systems

(Valadares et al., 2013). The management tasks involved in the MAPE-K

model are related to: (i) monitoring of the managed components; (ii) analyzing

the collected data, translating and aggregating the unstructured data into local

knowledge; (iii) planning adaptation actions depending on the environment

variation; and (iv) executing the decided plans upon the environment. An

autonomic element can interact with other autonomic elements via sensors

and effectors.

The proposal of IBM is to create elements completely autonomic and

without the need of any external administrator intervention (Valadares et

al., 2013). Meanwhile, the authors in (Müller-Schloer, 2004) affirm that to

design self-organizing systems with pure decentralized control may become

unmanageable. In order to provide these systems with the capability of

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 36

adapting at run-time, and preventing or healing from the occurrence of

undesired emergent behavior, they also require to being open for intervention

(i.e. an administrator access).

Thus, the Coordination module proposed by the authors in (Serugendo

et al., 2007) provides these systems with a behavior guiding and bounding

policies feature. They consider that all elements share metadata and policies,

which results in a form of overall control.

This module is based on the “Observer-Controller” paradigm (Müller-

Schloer, 2004). The key role of an “Observer” component is to monitor events

and states. A “Controller” component is responsible to take actions whenever

the observer part results let it consider appropriate (Müller-Schloer, 2004). As

a result, the control and feedback loop can dynamically reconfigure the system

components and change their perception of the collected data.

To illustrate the use of their architecture (Serugendo et al., 2007),

the authors present two proof-of-concept applications. First, they present an

application to a self-adaptive system. The goal of this system is to dynamically

allocate resources between components. Second, they consider the application

of their framework to a self-organizing system. They present a traffic light

controller as an example of a bottom-up system with several independent

components communicating and taking decisions on the basis of individual

collected data. They aim at showing how the global property (to maximize

traffic throughput) is broken down and implemented into local rules.

In this dissertation, we propose to combine MAS, neural networks,

IBM control loop, and an instance of the “Observer-controller” paradigm in

a architecture to address the key self-organizing and self-adaptive systems

requirements listed above.

MAS are widely used to model self-organizing and/or self-adaptive

systems (Hudson and Denzinger, 2014; Weiss and Sen, 1995; Neto et al., 2009;

Briot et al., 2006). An agent has some characteristics, such as autonomy and

social ability, which make MAS suitable for the development of SASO systems.

To provide agents with adaptation capacity, we create a control based on the

IBM control loop. However, we propose to substitute the analyze and plan

modules of the IBM control loop for a neural network. As we will see, neural

networks have a great generality and may be used for classification problems

as well as for control problems.

Finally, we provide an Observer agent to store the neural network, which

represents the common knowledge representation, and perform the adaptation

process. Chapter 3 provides a more detailed description about our proposed

architecture.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 37

2.7
MAS for IoT

We first present an overview of frameworks in the literature while

addressing the idea of mixing Artificial Intelligence and Internet of Things

concepts, especially those with focus on multi-agent systems. We also describe

a framework for physical agents that not have focus on IoT, but which provides

physical systems with self-organizing and self-adaptive properties.

We know of few research efforts in the literature about smart objects

for Internet of Things applications. The authors in (Fortino et al., 2014) aim

at providing a clear picture of the suitability of middlewares to support the

development of Smart Objects-based Internet of Things systems. The main

SO middlewares have been described and compared in their paper based on a

set of requirements for smart environments and objects.

Finally such authors listed four middlewares which provide efficient

management to develop and deploy SOs: ACOSO (Agent-based Cooperating

Smart Objects) (Fortino et al., 2012; Fortino et al., 2013), FedNet (Kawsar et

al., 2010), Ubicomp (Goumopoulos and Kameas, 2009) and Smart Products

(Mühlhäuser, 2008). They make use of different architectural models: the

ACOSO is agent-oriented and event-driven, the FedNet is service-oriented,

while Ubicomp and Smart Products are component-based.

However, authors in (Fortino et al., 2014) also discuss the limit of these

middlewares in the management of a vast number of cooperative SOs, since

none of them presented a case study to demonstrate its efficiency in wide

scenarios. According to the authors, to develop SO-based IoT systems, novel

software engineering methodologies for extreme-scale dynamic systems need

to be defined. It is also necessary to include specific abstractions able to deal

with system/component evolution that is a typical property of SO systems.

The authors argue that agent-oriented methodologies could be exploited by

engineers as the basis for formalizing such an effective development method

for SOs. Multiagent Systems were widely employed to cope with the main re-

quirements for IoT systems: interoperability, abstraction, collective intelligence

and experience-based learning.

The work performed in (Lopez and Pérez, 2012) also proposes a frame-

work for the IoT based on a multiagent System Paradigm. In this sense, the

authors listed some requirements needed for developing IoT applications. This

list gives support to the domain analysis of our proposed framework. According

to authors, requirements are the acquisition of measurements and data from

devices, its processing and translation of a context of useful information, and

actuation over the environment. Moreover, the approach showed that agents

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 2. Background and Related Work 38

have characteristics that are suitable for those requirements, such as percep-

tion, autonomy and social ability. Despite the fact that the paper presents a

real motivation to our approach, it only offers a brief description of a frame-

work components. The authors have also mentioned that there is still the need

for detailing every component and give them the intelligent characteristics.

Our approach provides intelligence components to develop IoT applications

through adaptation and organization algorithms, since we agree that it is cru-

cial to model this type of application.

A framework developed by the Italian Institute of Cognitive Science and

Technologies (Pezzulo et al., 2011), and used to support FIoT is the Framework

for Autonomous Robotics Simulation and Analysis (FARSA) (Massera et

al., 2013). This framework was created to assist research in the area of

embodied cognition, adaptive behaviour, language and action. A set of works

on Evolutionary Robotics (Marocco and Nolfi, 2007; Nolfi and Parisi, 1997;

Nolfi and Floreano, 1998; Massera et al., 2013) were developed using FARSA

or related software. Most of these experiments presents a group of embodied

agents that evolves for the ability to solve a collective problem.

Another related work to our approach is the framework presented in

(Sobe et al., 2012), Framework for Evolutionary Design (FREVO). The authors

in (Sobe et al., 2012) presents Frevo as a multi-agent tool for evolving and

evaluating self-organizing simulated systems. The authors affirm that Frevo

allows a framework user to select a target problem evaluation, controller

representation and an optimization method. However, it concentrates only

on evolutionary methods for agent controllers. As a result, this tool can

only provide offline adaptations and evolve only simulated environments. In

addition, it is often applied in the creation of autonomous robots.

Unfortunately, we can not reuse these referred platforms to control smart

objects since it they are very oriented towards the simulation of robotic agents.

Furthermore, these platforms have limited communication structure since they

do not give support to heterogeneous platforms required by current networks,

such as desktop, web, mobile and microcontroller boards.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



3
FIoT: Framework for Internet of Things

In this chapter, we first perform a survey of Internet of Things require-

ments taking previously published and personal experiences into account. Then

we describe our proposed agent-based model to create IoT systems and we

show how this model meets these requirements. Our proposed model consists

of three layers: (i) physical, (ii) communication, and (iii) application. To fa-

cilitate the development process of the communication and application layers

of an IoT system, we developed the Framework for Internet of Things (FIoT).

Therefore, we also present the FIoT in this chapter.

During the development of a framework, three stages must be considered:

(i) domain analysis, (ii) framework design, and (iii) framework instantiation

(Markiewicz and Lucena, 2001). A domain analysis stage provides a survey

of domain requirements. In the framework design stage, we used the Unified

Modeling Language (UML) diagrams (Beydeda et al., 2005) and the Astah

Tool (Vision, 2011) to specify FIoT structure, behavior, and architecture. UML

use case (Maßen and Lichter, 2002) and UML activity diagrams (Dumas and

Hofstede, 2001) are used to assist the description of the main idea of FIoT. In

addition, we present the FIoT UML class diagram (Markiewicz and Lucena,

2001), followed by the analysis of its kernel (“frozen-spots”) and flexible points

(“hot-spots”) (Fayad et al., 1999). “Frozen-spots” are immutable and must be

part of each framework instance. “Hot-spots” represent the flexible points of a

system, which must be customized in order to generate a specific application

(Markiewicz and Lucena, 2001).

According to the authors in (Markiewicz and Lucena, 2001), the abusive

use of hot spots in a framework design will inevitably lead to complex software

systems. Therefore, the framework designer has to choose the hot spots

carefully, neither exaggerating nor creating a far too generic framework.

The instantiation stage is presented in the Chapter 4, performing the

generation of new instances through implementation of the FIoT’s hot spots.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 40

3.1
Domain Analysis

As we emphasized in the chapters 1 and 2, we used the works (Fortino

and Trunfio, 2014) and (Lopez and Pérez, 2012) as basis of our domain analysis.

We also consider the requirements for the development of self-organizing and

self-adaptive applications proposed by the authors in (Serugendo et al., 2007).

From an engineering perspective, IoT systems are distributed systems

consisting of components (things) that may be physical devices, animals or

people. As we aim at giving support to the development of smart things, these

components have to autonomously collect data about themselves and their

environments and take actions (Kuniavsky, 2010). A smart IoT system can

make decisions based on sensored data and use dynamic reconfiguration to

improve its performance.

All IoT applications share common features, such as to connect and

collect data; but they have different features that vary according to specific

application scenarios. To assist the development of self-organizing and self-

adaptive IoT applications, we performed a discovery domain requirement (R),

as follows:

– R1. Design-time description (problem domain):

– R1.1 To analyze environmental conditions that are associated with

the problem goal (e.g., temperature, gases)

– R1.2 To define how to collect environmental conditions (e.g., a

microcontroller board and sensors)

– R2. Decentralization and Interoperability.

– R3. Autonomous things:

– R3.1 Things should be capable of autonomously sensing/monitoring

themselves and their environments

– R3.2 Actuation over the environment

– R4. Self-adapting capability:

– R4.1 The individual components or the whole system should be

capable of identifying any new condition, failure, or problem by

themselves/itself

– R4.2 Run-time capability of reasoning and of acting/adapting

– R5. To design a software to allow the system:

– R5.1 To recognize devices in the environment;

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 41

– R5.2 To acquire the data from devices that are collecting environ-

mental data;

– R5.3 To interface with device sensors; and

– R5.4 To process and translate the data to a context of useful

information.

In the next subsections, we show how our proposed model and framework

meet the requirements listed above.

3.2
Agent-Based Model

We developed an agent-based model to be used as a basis for generating

different kinds of applications for Internet of Things. Our approach is com-

pletely based on Artificial Intelligence paradigms, such as multi-agent systems,

neural networks and evolutionary algorithms. We aim at providing mechanisms

to automatically recognize and manage things in the environment.

As depicted in Figure 3.1, our model consists of the design of three layers:

(L1) physical, (L2) communication, and (L3) application. Each device in the

environment (physical layer) can be recognized and controlled by agents in the

application layer.

Figure 3.1: An agent-based model to generate IoT applications.

The physical layer consists of simulated or real devices (also named as

things/objects) and environments. In order to model the physical layer, the

project designer has to define the features of things as well as the features

of the environment in which these things are situated. He must raise the

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 42

environmental conditions that need to be monitored (e.g. temperature, relative

humidity and car flow). Then he can make specifications for devices. For

example, to set their sensors and actuators (i.e. the necessary technology to

collect data or make changes on the environment).

The communication layer defines that communication among agents

on the application layer and devices must occur using the Internet. Each

thing has one address, so an agent can access this address to get and set

the necessary information to control the device. We suggest the Java Agent

Development Framework (JADE) (Bellifemine et al., 2007) (Bellifemine et

al., 2010) to implement the communication among agents and things. JADE

implements the Foundation for Intelligent Physical Agents (FIPA) protocol

for agent communication. It allows the development of an interoperability

communication structure, which agents can execute on different platforms and

exchange information (see Section 2.2.1).

The application layer uses a Multi-Agent System (MAS) to provide ser-

vices, such as collecting, analyzing and transmitting data from several sensors

to the Internet and back again. We aim at providing decentralization, auton-

omy and self-organizing features to applications through MAS. In addition,

we provide the capacity of creating physical agents capable of interacting dy-

namically with complex environments by using approaches from Evolutionary

Robotics (section 2.5).

We suggest developing controllers at the application layer to allow

autonomous management of devices in the physical layer.

3.3
Central Idea for the Framework Design

A FIoT application consists of the development of three kinds of agents:

(i) God Agents (Riel, 1996); (ii) Adaptive Agents; and (iii) Observer Agents

(Müller-Schloer, 2004). The activity diagrams of these agents will be presented

in this section in order to specify agents workflows. We used darker blocks

in activity diagrams to represent the activities that vary from application

to application. The other activities are performed independently of target

applications. This analysis was performed to facilitate the further identification

of hot and frozen spots at the class diagram design-time.

The activities of the God Agent are presented on the diagram depicted

in Figure 3.2. The primary role of the God Agent is to detect new Things that

are trying to connect to the system. Thus, the God Agent allows the automatic

connection of new devices to the system, as a “plug and play” connection. The

“plug” in this example, means that the device needs to send a message to

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 43

the God Agent’s IP address, excluding manual settings. For each connected

device, the God Agent creates an Adaptive Agent to control it. An Adaptive

Agent is an agent embodied in a Thing, according to the description provided

in Section 2.2.2. While a device represents its body, a JADE software agent

contains its controller. The God Agent sets the controller (i.e. the “brain” of

the agent) for the Adaptive Agent according to the type of its device (e.g.

the number of sensors and actuators). Therefore, the controller creation is a

flexible point on FIoT system implementation.

Figure 3.2: Activity diagram of GodAgent.

Authors in (Neto et al., 2009) developed a framework to implement

self-adaptive software agents based on the autonomic computing principles

proposed by IBM (section 2.6). In order to create adaptive agents, they

provided a control loop composed of four activities: collect, analyze, plan and

execute (see Figure 3.3).

Figure 3.3: Control loop provided by framework in (Neto et al., 2009).

What follows is a brief description of each of these four activities:

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 44

– Collect: to collect application data;

– Analyze: to analyze those data by trying to detect problems;

– Plan: to decide what should be done in the case of problems; and

– Execute: to change the application due to executed actions.

We customized the control loop used in their work to define the behaviors

of the FIoT’s Adaptive Agents. Instead of executing the analyze and plan

activities, the FIoT’s Adaptive Agents make decisions based on a controller,

which can be, for example, a finite state machine (FSM) or an artificial neural

network (ANN), as shown in Figure 3.4.

Figure 3.4: Control loop provided by the FIoT framework.

Therefore, our Adaptive Agent must execute a sequence of three key

activities: (i) collect data from the thing; (ii) make decisions; and (iii) take

actions. The task of data collection focuses on processing information coming

from devices, such as reading data from input sensors. These collected data are

used to set the inputs of the agent’s controller. Then, the controller processes

a decision to be taken by the agent.

Adaptive Agents act according to the controller output. An action (effec-

tor activity) can be to interact with other agents, to send messages, or to set

actuators data of devices, allowing them to make changes to the environment.

As shown in Figure 3.5, the developer does not need to make changes to the

implementation of an Adaptive Agent since it behaves independently of the

device it is monitoring.

The Observer Agent aims at allowing Adaptive Agents to cope with the

changing (dynamic) environments, and at making them capable of adapting to

the unexpected. By using an adaptive approach, we expect the emergence of

features that have not been defined at design-time, including a sophisticated

self-organizing system.

Some researchers (Floreano and Mattiussi, 2008; Nolfi and Floreano,

2000; Dorigo et al., 2004; Trianni and Nolfi, 2011; Quinn et al., 2003; Panait

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 45

Figure 3.5: Activity diagram of the Adaptive Agent.

and Luke, 2005) investigate the emergence of cooperative or competitive

self-organizing multi-agent systems. One of the specifications to generate a

cooperative self-organizing multi-agent system is to conduct the adaptive

process according to collective evaluations. Self-organizing systems have global

goals. Thus, we aim at investigating during the adaption process if a collection

of agents are attending together the global goal or not. If the system needs

to adapt, the adaptation is performed for the whole multi-agent system. If we

conduct the adaptive process according to individual evaluations, the agents

may compete with each other. This is the main reason that we provide an

Observer Agent to evaluate the global behavior of the collection of Adaptive

Agents and to conduct the adaption process of the whole system. Therefore, its

main goal is to verify if the Adaptive Agents need to adapt or not. When the

actions of agents are far from what it expects, the Observer Agent executes

a supervised or unsupervised learning method, such as backpropagation or

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 46

genetic algorithm.

The process of adaptation consists of generating new configurations

for Adaptive Agents’ controller and test how agents will behave in the

environment. The Observer Agent selects the configuration used when the

collection of Adaptive Agents shows a desired global action to set their

controller. While the Observer Agent looks for the new controller configuration,

Adaptive Agents continue their execution normally.

As shown in Figure 3.6, the Observer Agent is tightly coupled to the

application being developed. The evaluation process has to be implemented

according to the expected global solution. Another variable activity is the

generation of new configurations for controllers. It depends on the applied

adaptive technique.

Figure 3.6: Activity diagram of ObserverAgent.

As agents execute specific activities to virtualize things and communicate

with them at the physical layer, we also created an activity diagram for devices,

as shown in Figure 3.7.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 47

Figure 3.7: Activity diagram of a Thing.

Things in the physical layer must execute the following sequential activ-

ities:

– Connect to the Internet

– Send message to the GodAgent, reporting your type of controller. The

GodAgent has some controllers already registered. Thus, the type of

controller indicates the characteristics of a device, such as the list of

sensors and actuators.

– Wait message from GodAgent containing the address of its Adap-

tiveAgent. Then, the thing will use this address to send and receive the

next messages in a cycle:

– Send message with data sensors

– Wait message with data to set its actuators.

Table 3.1 summarizes the model and framework description in this

section, and presents how them meet the requirements listed in Section 3.1,

according to their layers. FIoT meets the requirements associated with the

layers of communication (L2) and application (L3).

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 48

Table 3.1: How the model and FIoT meet the IoT requirements.

3.3.1
Use Case Diagram

This subsection presents the Use Case Diagram of FIoT (Eriksson, 2006),

as depicted in Figure 3.8. Our objective is to provide an initial design of

the framework. The previous sections explained the roles of each actor and

presented activity diagrams to describe the use case scenarios.

The microcontroller package is not part of the FIoT system; otherwise

it represents the interaction between a thing and the application controller.

A device can collect data from the environment (use case “Read Input”) and

change the value of its actuators (use case “Set Output”). A thing has to be

capable of sending data to and reading data from the Internet.

The system has some common and alternative features. The type of

controllers and the techniques to be used to adapt the controllers are examples

of alternative use cases. For example, the use case “Adapt” can extend the

use cases “Run Genetic Algorithm” or “Run Backpropagation”. If the system

executes one of these use cases, the adaptive algorithm may make changes on

the controller parameters. If the system developer chooses to work with neural

network and genetic algorithm, the use case “Run Genetic Algorithm” will set

the weight sequence to be used by the neural network.

The use case “Compute Output” can also make changes on controllers.

For all types of controllers, to compute an output is necessary to set the data

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 49

input parameter.

Figure 3.8: Use Case Diagram.

3.4
Details of FIoT

As presented in the section 3.2, our model proposes the use of JADE

to support the communication among agents and things. FIoT extends JADE,

a Java framework to implement multi-agent systems. Figure 3.9 shows the

packages of the FIoT package.

The project consists of the development of JADE agents, the behaviors

of agents, the controller to be used by Adaptive Agents, and the adaptive

process to be executed by the Observer Agent. In addition, the system gives

support to different interface communication message systems, such as sockets

and ACL. We will present the main FIoT classes (Sommerville, 2004) of the

main packages.

The class diagram depicted in Figure 3.10 illustrates the FIoT classes

associated with the creation of agents and their execution loops. As described

before, the FIoT agents are represented by the GodAgent, ObserverAgent and

AdaptiveAgent classes, which extend the FIoTAgent class. Then, they can

access and make changes to the list of controllers (ControllerList class). This

list stores all controllers already created by the GodAgent for each thing type

(e.g. chair with one temperature sensor, lamp with one presence sensor and

one alarm actuator).

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 50

Figure 3.9: Packages of the FIoT project.

All agents execute sequential behaviors, named as ExecutionLoop: God-

Loop, AdaptiveLoop and ObserverLoop classes. The sequential behavior is a

type of JADE behavior that provides support to the implementation of com-

posed activities (Bellifemine et al., 2007). Thus, the ExecutionLoop is a se-

quence of smaller actions. For example, for Adaptive Agents, these execution

loops are composited of collect, decision and effector activities. We modeled

the AdaptiveLoop according to the work presented in (Neto et al., 2009) that

provides an adaptive structure based on the IBM controlloop (see Figure 2.12).

Figure 3.10: Class diagram of FIoT - Agents.

The class diagram depicted in Figure 3.11 illustrates the collection

of behaviors already developed. Activities such as making evaluation and

adapting are examples of hot spots. Therefore, new strategies for evaluation

and adaptation can be developed to be used by agents.

While ObserverAgent access the ControllerList to adapt controllers con-

figuration through ChangeControllers behavior, AdaptiveAgent uses it to get

its controller, set data input, and then obtaining the calculated output.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 51

Figure 3.11: Class diagram of FIoT - Behaviors.

The class diagram depicted in Figure 3.12 illustrates the controllers

classes. Agents whereas virtualize homogeneous devices can use the same con-

troller to make decisions. For example, in a scenario where similar smart lamps

have to be managed, the same ANN controller can be used by Adaptive Agents.

The GodAgent stores their controller in ControllerList as “lampNeuralNet-

work”. If there is another group of devices, the GodAgent has to create a

different controller for them.

Figure 3.12: Class diagram of FIoT - Controllers.

3.5
How to instantiate FIoT: Technical Details

A framework is classified according to its extensibility; it can be used as a

white box or a black box (Fayad et al., 1999; Markiewicz and Lucena, 2001). In

white box frameworks, a instantiation is only possible through the creation of

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 52

new classes. Such way, a developer must understand the framework very well

in order to produce an instance. A black box framework allows a developer

to produce new instances using configuration scripts. This kind of framework

creates the classes and source code for the chosen configuration automatically,

which facilitates the instantiation process (Markiewicz and Lucena, 2001).

FIoT contains both white and black boxes characteristics. Thus, it is a

gray box framework (Markiewicz and Lucena, 2001). In this section, we present

how to create a instance via configuration files or creating and using a new

class. By providing the possibility to use new classes, we aim at increasing the

framework domain coverage. A framework user has the option to implement

and use other types of controllers and adaptive techniques.

To create an instance of FIoT, the first step is to specify the type of

controller to be used by Adaptive Agents. A developer can use an implemented

one or develop another. If he decides to develop a new one, he will create a

new Controller type class. This new class must implement the major Controller

class methods, as shown bellow:

Listing 3.1: The major methods of the Controller class.

public interface Controller {

...

public double[] getOutput(double[] input);

public void change(double[] configuration);

public Controller create(File file);

}

All controllers have to implement the method getOutput() that provides

an output after receiving an input. Adaptive Agents use this method on

decision activity. The ObserverAgent accesses the controller list during the

adaption process to change the configuration of the controller used by Adaptive

Agents. Listening bellow illustrates part of the codification of Observer and

Adaptive agents’ controlloop behaviors.

Listing 3.2: Parts of the ObserverLoop and AdaptiveLoop behavior codes.

//OBSERVERLOOP

if(geneticAlgorithm){

...

for (int cont = 0; cont < numberOfPopulation; cont++) {

...

Individuo indi = listIndividuos.get(cont);

double[] genes = indi.getCromossomo().getGenes();

//Access the Controller List to change the weights of the

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 53

controller used by Adaptive Agents

this.listControl.getController(

simulation.getControllerInUse()).change(genes);

...

}}

------------------------------

//ADAPTIVELOOP

...

double input[] = msgFromDevice.getContent(); //Receiving

sensor data from the device

//getting a controller in the Controller List

Controller control =

ControllerList.getInstance().getController(

this.getDevice().getControllerID());

double[] output = control.getOutput(input);

...

Executions differ from each other based on how the current controller

implements the common methods of the Controller class. The code below

presents the implementation of a three-layer network controller.

Listing 3.3: Implementing a new controller.

import fiot.agents.controller.Controller;

public class ThreeLayerNetwork implements Controller{

public ThreeLayerNetwork(File file){..}

...

@Override

public double[] getOutput(double[] input){

for (int i = 0; i < layers.length; i++) {

if (i > 0) {

//hidden and output layers

layers[i].setEntryNumber(

layers[i-1].getNumberOfNeurons());

int numW = layers[i].getNumberOfNeurons()*

layers[i-1].getNumberOfNeurons();

layers[i].setNumberOfWeights(numW);

layers[i].setWeights(this.weights[i]);

layers[i].setEntradas(layers[i-1].getOutputs());

layers[i].getLayerOutput();

} else {

//input layer

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 54

layers[i].setNumberOfNeurons(this.numInputNeurons);

layers[i].setOutputs(input);

}

}

return this.layers[this.layers.length-1].getOutputs();

}

@Override

public void change(double[] configuration) {

//update weights

weights = new double[layers.length][this.numWeight];

int numWeight = 0;

for (int i = 1; i < layers.length; i++) {

int numW = layers[i].getNumberOfNeurons()*

layers[i-1].getNumberOfNeurons();

for(int cont = 0; cont<numW; cont++){

weights[i][cont] = configuration[numWeight];

numWeight++;

}

layers[i].setWeights(this.weights[i]);

}

}

After creating a new controller, the developer must insert it into the

ControllerList to be accessed by FIoT agents, as follows:

Listing 3.4: Making use of a new controller.

import fiot.agents.controller.ControllerList;

import application.controller.neuralnetwork.ThreeLayerNetwork;

public class FIoTApplication{

...

ControllerList listControl ;

ThreeLayerNetwork controlLayer = new ThreeLayerNetwork(file);

listControl.addController(controlLayer.getNameType(),controlLayer);

}

Then, a new controller is available to be used by Adaptive Agents. If

a developer decides to make use of techniques already available on FIoT, he

has to provide a technical description of them. He can make it through a

configuration text file, as shown in Figure 3.13. This figure illustrates two

examples of controllers’ description.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 55

Figure 3.13: Examples of controllers registered by the system developer via
text files.

A controller can be a neural network, a finite state machine, or only a

simple “if statement” code. Independently, it must have inputs and outputs.

A finite state machine, for example, consists of states, input and outputs. It

can produce an output sequence according to the input sequence (Lee and

Yannakakis, 1996). If the controller is a neural network, the designer will also

need to set the number of hidden neurons and connections among neurons.

In addition, the description allows the Adaptive Agent to know which type of

sensors and actuators the device is using and to use a specific logic to process

and translate the collected data.

The ObserverAgent is an extensible feature of the framework. However,

FIoT provides a default adaptive class that allows the ObserverAgent to exe-

cute a genetic or a backpropagation algorithm. The developer can change the

execution of these algorithms via configuration files, as shown in Figure 3.14.

After creating the controller and adaptive method, the developer can

configure the application execution. The code bellow illustrates the configu-

ration parameters to be set before start an IoT application using FIoT. As

shown, the ApplicationConfiguration class is one of the FIoT classes (pack-

age “general”). First, it is necessary to set the type of controller and adaptive

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 56

Figure 3.14: Configuring the execution of a genetic algorithm.

technique to be used by the application. Then, the developer must provide an

IP for the GodAgent before starting the GodAgent and ObserverAgent via the

startExecution method.

Listing 3.5: Configuring a FIoT application.

import fiot.general.ApplicationConfiguration;

...

public class ApplicationControl {

ApplicationConfiguration configuration =

ApplicationConfiguration.getInstance();

String namecontroller;

String nameMethod;

public ApplicationControl(){

this.namecontroller = "Three Layer Network";

this.configuration.setNameController(namecontroller,

namecontroller);

}

public void setControllerFile(File file) throws IOException{

this.configuration.createController(this.namecontroller,

file);

}

public void setMethodFile(ObserverAgent ob, File file) throws

IOException{

this.nameMethod = "Back-propagation";

this.configuration.setLearningMethod(this.nameMethod,

file);

this.configuration.setObserverAgent(ob);}

public void startExecution(){

String ip = "192.168.43.112"; //GoDAgent’s IP

this.configuration.startMainAgents(ip, "SOCKET");

}

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 3. FIoT: Framework for Internet of Things 57

The importance to define a name for each type of controller is because the

device uses this name to communicate to the GodAgent its type. According to

the controller’s description, the GodAgent automatically build the controller

to be used by an Adaptive Agent. The code below is the Arduino code used

by an example of device. The first step is to send its identification to the God

Agent, as shown:

Listing 3.6: An example of Arduino code: The device informs to the GodAgent

that it requires a “bananaNeuralNetwork” controller type.

String remote_server = "192.168.43.112"; // GodAgent’s IP address

String remote_port = "9876";

// Initialize client with IP address and port number

WifiClient client(remote_server, remote_port, PROTO_UDP);

if (client.connect()) {

// Send message over UDP socket to peer device

client.println("bananaNeuralNetwork"); //its controller type

Serial.println("receiving message from God: ");

waitMessageGod();

}

void waitMessageGod(){

String msgFromGod="";

...

//GodAgent provides the port number of a new AdaptiveAgent.

//Then, the device connects to this AdaptiveAgent

WifiClient client(remote_server, msgFromGod, PROTO_UDP);

Wireless.begin(&wireless_prof);

}

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



4
Evaluation: Illustrative Examples

We evaluate FIoT by implementing the flexible points of it to generate

different applications. As discussed in the chapter 3, the framework instantia-

tion is the last stage to be considered during the development of a framework

(Markiewicz and Lucena, 2001).

We consider the following IoT instances in FIoT evaluation process: (i)

Quantified Things and (ii) Smart City. For each one, we developed an illustra-

tive example, and this chapter presents a brief description, the experimental

setup, and the evaluation result of them. In addition, we present the initial

design of a future instance, a Quantified Us experiment.

Section 4.5 presents how the generated applications adhere to the pro-

posed framework, filling the main variable parts.

4.1
FIoT’s Instances

The frozen spots are part of FIoT kernel. Then each of the proposed

applications will have the following modules in common:

– Detection of devices by the GodAgent;

– The assignment of a controller to a particular Adaptive Agent by the

GodAgent;

– Creation of Agents;

– Data Collection execution by Adaptive Agents;

– Making decision by Adaptive Agents;

– Execution of effective activity by Adaptive Agents;

– The communication structure among agents and devices.

Some features are variable and may be selected/developed according to

the application type, as follows:

– Controller creation;

– Making evaluation by the ObserverAgent;

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 59

– Controller adaptation by the Observer Agent.

Therefore, to create a FIoT instance, a developer has to implement/-

choose: (i) a control module (e.g. neural network, finite state machine); (2) an

adaptive technique to train the controller; and (iii) an evaluation process (e.g.

genetic algorithm performs evaluation via fitness function). As shown in this

chapter, we only evaluate applications using a neural network. However, we im-

plemented FIoT to give support for the use of finite state machines (fsm), since

we provided an abstract controller class. A framework user can implement a

Mealy machine (a special case of a fsm), for example, and use an evolutionary

algorithm to evolve its structure and transition probabilities (Pintér-Bartha et

al., 2012; Sobe et al., 2012).

To support the construction of new applications via FIoT, Figure 4.1

depicts different configurations that can be selected before creating an instance.

Figure 4.1: Different configurations to create FIoT’s instances.

As shown above, it is possible to generate applications using different

configurations. A framework user needs to select a configuration that works

better for solving a given problem. It is also possible to create an application

without adaptation. For example, the user framework can start the system

making use of a previously trained neural network, or only making use of an

“if statement” code to represent the controller. In such case, the Observer

Agent will not perform any activity.

4.2
Quantified Things

The “Quantified” movement is emerging via the Internet of Things (IoT).

The most popular concept is the “Quantified Self” (QS) (Swan, 2012), based

on which individuals use sensors and monitoring devices to quantify their

health and behavior (Swan, 2013). Some researchers recently started to refer to

“Quantified Us” (Lupton, 2014) and “Quantified Community” (Barrett et al.,

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 60

2013) as a way of articulating how the small data produced by self-trackers

could be usefully incorporated into large data sets to provide new insights

about collective features.

IoT aims at empowering not only anyone but also anything to connect to

the Internet and to collect data about itself and the environment in which

it is situated. As such, the question arises as to what happens if we use

the “Quantified Self” and “Quantified Community” concepts to quantify a

thing and groups of things. Instead of asking, “What can people learn when

pooling data among themselves?”(Havens, 2014), we start to ask, “What can

things ‘learn’ when pooling data among themselves?”. Thus, we propose a

new branch of the “Quantified” movement, named “Quantified Things” (QT).

In section 4.2.1, we will further analyze works in the “Quantified” area.

The things that can be quantified range from fruits to factory machin-

ery. The former represents the “Quantified Fruit” experiments: storing fruit,

collecting data about fruit and environmental conditions, sharing it on the

Internet, and providing an advanced informative perspective about fruit shelf

life. The latter represents the “Quantified Factory Machinery” experiments

and part of the Industry 4.0 (Fantana et al., 2013), when one machine predicts

a fault based on the history of other faults. Another possible scenario is to

quantify a bean plantation, when the owner of such plantation predicts the

crop yield based on the history of other crops.

By using our approach, we aim at providing the creation of many appli-

cations, such as “Quantified Fruit,” “Quantified Factory Machines,” “Quan-

tified Bean Plantation,” among others. To illustrate the use of our proposed

model, we derived an example from one of the “Quantified Things” applica-

tions: “Quantified Fruit.” Using the “Quantified Fruit” concept, some fruit

storage use sensors to monitor environmental conditions, such as temperature,

relative humidity, lighting and some gases that may affect fruit ripening. In

turn, they populate a cloud database with collected data. By using these data,

the system predicts how many days it takes for a fruit to spoil under specific

environmental conditions.

The remainder of this section provides a brief review of the “Quantified”

movement, performs a survey of specific “Quantified Things” requirements,

and describes how the FIoT’s model can be adapted to create “Quantified

Things” applications. Then, we discuss how the proposed model can be used

to design and to implement “Quantified Things” instances. In addition, it

presents an experimental setup.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 61

4.2.1
A Brief Review of the “Quantified” Movement

Several projects were implemented to build knowledge bases for different

kinds of problems (Boe and Salunkhe, 1967) (Mpelkas and Kenyon, 1972)

(Yoshida et al., 1989) (UCI, 2014). These involved applying factor analysis

to experimental data in order to define problem hypotheses and extract rules

for each hypothesis. For example, we know of some approaches proposed to

understand the fruit ripening process (Boe and Salunkhe, 1967) (Mpelkas and

Kenyon, 1972). They were designed to investigate the factors (e.g. conditions

of temperature, relative humidity, gases and lighting) affecting ripening and

spoilage of fresh fruits and vegetables.

One of the key issues is how to build a knowledge base. Since design and

population of a knowledge-based expert system usually rely upon a series of

expensive and long-duration experiments, very laborious and time-consuming

testing is required.

The “Quantified” movement appears as an alternative to the creation of

these datasets, since it seeks to automate the data collection and interpretation

process. As pointed out in (Barrett et al., 2013), the objects have been

autonomously collecting data about themselves and their environments, and

voluntarily sharing this information over the Internet.

A lot of systems have been developed in the “Quantified” context. The

Quantified Self website (Quantified Self Guide to self-tracking tools, 2014)

(Labs, 2014) lists over 500 self-tracking tools. However, few works (such as

those performed in (Li et al., 2010) and in (Rivera-Pelayo et al., 2012)) present

a conceptual model to assist the creation of new “Quantified” approaches.

Currently, there is no unifying framework that clusters and connects these

many emergent tools with the goals and benefits of their use.

Not all of existing “Quantified” works involve a reflexive monitoring

subject. We know of conceptual works for “Quantified Cars”(Swan, 2015)

and “Quantified Travelers” (Jariyasunant et al., 2011) and an application for

“Quantified Babies” (Gaunt et al., 2014). For example, the “Quantified Babies”

app lets parents measure and track their babies. However, they extend only

the Quantified Self concept. They do not use the idea of knowledge sharing

among things and a collective-level analysis yet.

4.2.2
Modeling “Quantified Things”

As “Quantified Things” applications are kind of IoT applications, a

“Quantified Things” model has to meet the requirements imposed in the

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 62

section 3.1. However, some additional features are particular for these kind of

applications, as follows:

– R6. To create a dataset to maintain the collected and processed data;

– R7. To process a dataset and use a pattern recognition mechanism;

– R8. To provide a graphic interface to allow a human administrator to

monitor and analyze data.

The Adaptive Agents have to execute the mandatory activities of collec-

tion, decision, and action. The effector task of the Adaptive Agents in “Quan-

tified Things” applications consists of making predictions based on collected

data. They use an artificial neural network (ANN) to perform predictions, as

depicted in Figure 4.2. It could also use another machine learning approach

(Ugulino et al., 2012).

Figure 4.2: The model for individual tracking in QT systems.

By using a graphical interface, a human administrator can view the

collected data from an Adaptive Agent and the performed prediction. Also

he/she can indicate how much correct the performed prediction was.

The Adaptive Agents share their experiences through a cloud database,

which represents the knowledge base of a particular type of “Quantified

Things” experiments. In parallel, the Observer Agent observes the data pro-

vided by Adaptive Agents to verify whether predictions are satisfactory. If

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 63

they are not acceptable, the Observer Agent executes the adaptation process

to adjust the parameters of the neural network used by Adaptive Agents. The

adaptive technique used by the Observer Agent is a supervised learning algo-

rithm, such as backpropagation (see Section 2.4), since we have historical data

to train the network.

Table 4.1 summarizes how FIoT can be instantiated to meet the novel

requirements listed above.

Table 4.1: Specific requirements for “Quantified Things” applications.

4.2.3
“Quantified Fruit”

To illustrate the use of our proposed model, we derived an example

from “Quantified Things” applications: “Quantified Fruit.” We developed

an illustrative example using bananas named “Quantified Bananas.” In this

section, we provide the environment set up details as well as the experimental

results to evaluate the efficacy of the proposed model.

Why ”Quantified Fruit”?

The percentage of fresh fruit losses after fruit picking is extremely high.

In the case of tropical fruit, such as bananas, more than a half of production

is lost during transportation and distribution. The main problem is that the

people allocated to distribute and sell fruit usually are not concerned about the

existing techniques to preserve the fruit after it has been picked. In addition,

tons of fruits are thrown away by consumers each year, as a result of not being

consumed in time (Johnson et al., 2008).

There have been a number of investigations into what are the satisfactory

conditions to prolong fruit shelf life (Boe and Salunkhe, 1967; Mpelkas and

Kenyon, 1972; Johnson et al., 2008). Therefore, we can infer that fruit quality

changes when products are stored under different environmental conditions

(e.g. refrigerated, ambient temperatures), as shown in Figure 4.3. However,

to combine these factors to develop recommendations for the best storage

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 64

conditions for each product is far from trivial. Consumers and retailers find

it difficult to follow these recommendations. For example, to preserve onions

at home, consumers are advised to keep them in a cool, dark and dry place.

Bananas must be kept cool, but cannot be refrigerated. Some researchers affirm

that bananas are best stored at room temperature (Johnson et al., 2008).

Figure 4.3: Bananas from the same bunch after being stoted in different
conditions.

We have prototyped a tool named “Quantified Fruit.” That is capable of

monitoring fruit storage and making inferences about it. This tool indicates

how many days it takes for fruit to spoil under specific environmental condi-

tions. Depending on the chosen storage, fridge or room temperature, this tool

will indicate a different number of days before spoilage. Consumers, distribu-

tors and retailers make use of this information to compare results and select

the best place for storing a specific fruit.

Modeling “Quantified Fruit”

The “Quantified Fruit” system is depicted in Figure 4.4. The collection

of “Quantified Fruit” devices that are composed of Arduinos (section 2.1)

and sensors, represents the physical layer of our model. The sensors that

are depicted in Figure 4.5 are used by the Arduino to collect environmental

conditions, such as temperature, relative humidity, lighting and gases that may

affect fruit ripening (e.g. hydrogen, methane).

According to the proposed model to develop “Quantified Things” sys-

tems, each device is managed by an Adaptive Agent. It uses a three-layered

feed-forward neural network (Haykin, 1994) to make predictions (i.e. number

of days to spoil). Then, predictions are also exhibited at a graphical interface.

Thus, a human administrator (e.g. consumer) can monitor and evaluate the

environment where the fruit is stored.

As shown in Figure 4.4, we set a parameter in the neural network

indicating the type of fruit (e.g.“0” to indicate banana, “1” to indicate apple).

So, the system can provide a prediction according to the selected fruit type.

Besides informing the type of fruit, a user is also responsible for reporting

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 65

Figure 4.4: An instance of FIoT to create ”Quantified Things” Instances.

Figure 4.5: Set of sensors.

the actual amount of time the fruit took to spoil. In future releases, we may

improve the system to automatically provide this information, since we may

use the collected value of methane gas to assess whether the fruit is spoiled.

4.2.4
Quantified Bananas

Ten banana storage experiments were conducted to create an initial

knowledge base for our application and to investigate how the system behaves.

Experimental Description

We carefully selected the individual bananas for haven a similar look.

Each experiment was executed in a different condition. The experiments were

created combining four parameters, as shown in Table 4.2: (i) dark (i.e. in a

closed or open box); (ii) fridge (i.e. in the fridge or at room temperature); (iii)

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 66

rotten fruit (i.e. put together with rotten fruit or not); and ripe fruit (i.e. put

together with ripe fruit or not).

Table 4.2: Experimental Description

Experiment Dark Fridge Rotten Fruit Ripe Fruit

1

2 X

3 X

4 X X

5 X

6 X X

7 X X X

8 X X

9 X X X

10 X X

For example, in the first experiment, we placed a banana in an open

box (not dark), at room temperature, and by itself. The ninth experiment was

executed in a dark place, in the fridge, and together a rotten fruit. Figure 4.6

illustrates conditions of experiments one, three, ten and five, respectively.

Figure 4.6: Example of scenarios.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 67

Initial Database For Training Set

We used data collected by Adaptive Agents in these experiments to

elaborate an initial database, as presented on the Table 4.3.

Table 4.3: Initial Database for neural network training.

Exp. Temp.(C) RH. Hyd.(V.) Met.(V.) Lum.(V.) LifeSpam(Days)

1 27.62 70.22 2 184.0 15.0 14

2 27.59 70.39 9 231.0 10.0 12

3 28.02 72.53 8 275.0 10.0 5

4 27.92 72.67 19.0 271.0 5.0 5

5 27.81 72.75 3.0 258.0 3.0 10

6 27.74 71.35 15.0 262.0 3.0 9

7 28.26 73.23 18.0 309.0 3.0 3

8 28.69 71.75 7.0 316.0 4.0 3

9 27.77 59.89 5.0 411.0 2.0 4

10 25.86 70.08 5.0 331.0 40.0 6

At the beginning of each experiment, the Adaptive Agents collected tem-

perature (abbreviated Temp.), which is registered in centigrades (C), rela-

tive humidity (RH), hydrogen gas (Hyd.), methane gas (Met.), and luminosity

(Lum.). The values of gas sensors were recorded according to the sensor output

value (V.). At the end of each experiment, we made note of “actual” fruit shelf

life (this information is not precise since naked-eye observations determined

it).

Initial Training

The Observer Agent used these data to train the neural network and

to provide first predictions. We established a stopping criterion to be used in

backpropagation training based on minimum error (this error is calculated ac-

cording to the standard deviations). Thus, the algorithm execution is repeated

until the performance of the network is satisfactory.

Training Results

We verified the training process getting the predictions and comparing

them with values registered as actual fruit shelf life for each experiment. This

comparison is shown on Table 4.4, where the column “Expected Results”

shows the “actual” shelf life, the column “Real Results” shows the predictions

provided by the neural network, and the column “Error” the difference between

these values, based on the normalized values.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 68

Table 4.4: Results of backpropagation execution

Experiment Expected Results Actual Results Error

1 1.0 0.999 ≈ 0

2 0.857 0.866 -0.0095

3 0.35 0.340 0.01

4 0.357 0.382 -0.025

5 0.714 0.719 -0.005

6 0.642 0.614 0.028

7 0.214 0.207 0.006

8 0.214 0.225 -0.010

9 0.285 0.285 ≈ 0

10 0.428 0.428 ≈ 0

As showed on Table 4.4, differences between expected and actual results

are not so far off. The largest errors were presented in experiments four and

six, corresponding to approximately one day. Both tests were executed at

room temperature and with ripe fruit inside the box. A possible solution to

reduce this error is to provide new experiments with similar settings, since

the backpropagation algorithm needs an extensive dataset to train neural

networks.

Initial Evaluation

After training the neural network training, we executed two new exper-

iments to evaluate the configuration chosen by the Observer Agent to set the

neural network and verify how the system behaves in new situations. . The

former was performed outside the fridge and in an open box. The system pre-

dicted thirteen days, and we observed that the banana spoiled in approximately

twelve days. However, the previous experiments did not cover this new exper-

iment’s conditions: the banana was put in the fridge in a closed box, without

other fruit. Although, the system suggested five days, we observed that the

banana spoiled in approximately fifteen days.

First Adaptation

Given that the difference between results was so large, the Observer

Agent had to execute backpropagation again to improve the neural network.

This novel execution takes two new experiments into account, as showed on

Table 4.5.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 69

Table 4.5: New data to also be used in backpropagation.

Exp. Temp.(C) RH. Hyd.(V.) Met.(V.) Lum.(V.) Expec. Real

11 28.21 70.24 3 183.0 16.0 12 13

12 27.77 59.89 5 283.0 30.0 15 5

Discussion

In order to analyze our device, our first experiments used bananas. Since

we provided it with the capacity of self-adaptation, we expect that the device

system will adapt itself to support new types of fruit. Then, the idea is to use

other types of fruit during the training experiments or at run-time (by users)

to check whether the system automatically improves itself.

We need to execute many more experiments using bananas and other

fruits to optimize the “Quantified Fruit” device and to improve predictions.

On the top of offering predictions about shelf life, this system can be adapted to

provide other kinds of predictions, such as the percentage of fruit production

that could be lost under specific transportation conditions. Besides making

predictions, this device could also be extended to make suggestions and act on

its own. For example, the “Quantified Fruit” device could make suggestions

for temperature changes in real time. If we added a cooler to the device, we

understand that it could perform temperature changes by itself.

We expect this device will lead to improvements both in transportation

methods by distributors, consumers and retailers, as well as their storage

patterns and practices (in the fridge, at ambient temperature, loose, in original

packaging, etc.).

As the framework allows the system designer to use different types of

controllers and algorithms, he/she could also use another structure to provide

temporal and more precise predictions. Actually, an Adaptive Agent makes a

prediction only based on the data provided during the training step. It has

not been providing a continuous prediction, which takes the daily environment

changes into account. As a solution, a framework user can add a new input

parameter in this neural network to indicate the time of collection.

We conducted an initial evaluation of our scenario and of the capacity

in generalization of our neural network based prediction system. In the future,

we may conduct a more detailed evaluation (e.g., extended training sets, cross

validation (Setiono, 2001)).

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 70

4.3
Smart City

Smart Cities is currently the hottest trend associated with the Internet of

Things (Bohli et al., 2013; Mitchell et al., 2013; Gubbia et al., 2013). In order to

have a Smart City it is fundamental to have many sensors scattered throughout

the whole city collecting information, such as water and energy consumption,

traffic and garbage monitoring. Based on that information, Smart Cities should

have smart traffic light, smart lighting, smart waste management, and smart

environment monitoring (Mitchell et al., 2013). Therefore, the infrastructure

of a Smart City consists of self-managed entities, not relying only on a human

centralized control (Mitchell et al., 2013).

In order to support smart services, IoT principles are applied to create

self-managing car traffic control applications (Möller, 2014; TheGuardian,

2015), aiming at rebuilding the actual structure of traffic lights. For instance,

cars, traffic lights and pedestrians will all be connected via the Internet,

collecting and sharing data, such as GPS data from cars, traffic lights intervals,

and camera images (TheGuardian, 2015). Based on this data, traffic lights will

turn green or red, GPS consoles will offer drivers different routes, etc. Figure 4.7

illustrates a futuristic vision of cars and traffic lights interaction (Möller, 2014).

Figure 4.7: Introducing the IoT paradigm for transportation system analysis
(Möller, 2014). Pg. 104.

The reduction of urban traffic congestion continues to be the main goal

of this new smart approach of car traffic management. For example, (Carlino

et al., 2012) propose that optimized traffic policies should be determined by

the use of autonomous cars. However, given that their research focus on a

intersection control mechanism, they only analyze how different policies affect

a small portion of the road network.

According to Standford-Clark, an IBM engineer, the problem is not to

change the traffic lights, but the “interconnection of unintended consequences.”

Thus, most traffic lights sequences are set via longer term algorithms, taking

the whole of the road network into account (TheGuardian, 2015). Unfortu-

nately, determining such sequences is a non-trivial and time consuming task,

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 71

as one must take into account a wide range of factors like, traffic density,

pedestrian flows, and road complexity.

FIoT makes it possible to create dynamic controllers for homogeneous

things situated in a distributed environment by using a self-developing decen-

tralized and adaptive process. Figure 4.8 shows the model used by FIoT for

generating control applications for distributed environments.

Figure 4.8: A FIoT instance for creating a smart controller for homogeneous
things.

The model comprises two layers: the environment, in which the homo-

geneous things are situated, and the controller application layer. The devices

in the environment layer indirectly interact with other devices within a range.

Our aim is to provide self-organizing systems consisting of several indepen-

dent components communicating and taking decisions on the basis of local

level data. Each device is controlled by an Adaptive Agent that collects data

and establishes how its device interacts with the environment. If the things in

the environment are GPS equipped, the interaction may occur on the applica-

tion level via Adaptive Agents. The Observer Agent evaluates the the overall

system performance. For example, maximizing the traffic throughout, is the

global goal in a car traffic experiment.

4.3.1
Car Traffic Application

In this subsection, we describe a simulated car traffic scenario that

stands as our application physical layer. Figure 4.9 depicts the elements that

are presented in our scenario: vehicles, traffic lights, road segments, dividers

and intersections. All roads are one-way; a segment is a portion of a road;

intersections connect two or more segments; and a road divider divides a

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 72

segment into two segments. We modeled our scenario as a graph, as shown in

Figure 4.10. There edges represent segments and nodes represent road dividers

and intersections.

Figure 4.9: Traffic elements.

Figure 4.10: Modeling a scenario as a graph.

Each segment has a traffic light and supports a maximum number of

vehicles. A road intersection element, which connects two or more segments,

does not let more than one segment to set its traffic light to green (in order to

avoid vehicle collisions).

At the beginning of the simulation, each vehicle randomly chooses

a departure and a target node. According to these selections, the system

calculates an optimum and fixed route for each car based only on the number

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 73

of nodes. After that a vehicle completes its journey, it must start a new one, as

the system calculates a new route. The simulation ends after the execution of

a specific number of cycles. Each cycle lasts for the same fixed duration. The

elements in the simulation do the following for each cycle:

1. All vehicles try to change from the current road segment to the following

one. A vehicle will stay in the same segment if the following segment

reached the maximum supported number of cars, or if the traffic light

color of its current segment is red;

2. Vehicles that already have concluded their journeys are reintroduced into

the map at the start of a new journey;

3. Each road segment decides whether to change the current color of its

traffic light or not. If it is in a intersection and the decisions is to set the

light color to green, it must send a requirement value to the respective

road intersection element.

4. Each road intersection receives the requirement values from its segments.

Then, it lets the segment with the highest requirement value to set its

light color to green.

As described above, only road segments are able to make decisions. The

others, vehicles and intersections, have to execute previously established tasks.

Smart Road Segment

Each road segment has a simulated microcontroller board associated with

it that has an apparatus for calculating the rate of vehicles, interacting with

the closest segment, and sending a request value to its respective node element

in order to set its own traffic light color to green.

Thus, the GodAgent creates an Adaptive Agent for each road segment in

the scenario. Independently of the application, an Adaptive Agents always has

to execute three tasks: data collection, decision making and action enforcement.

For this experiment, the first task consists of receiving data collected by the

respective road segment’s microcontroller. It provides data related to vehicle

flow, information from its neighbor segment and its current traffic light color.

To make decisions, Adaptive Agents use a “three-layer feedfoward” with

a feedback loop (see Section 2.4). Feedback occurs because the output of its

traffic light color influences its next network input, as shown in Figure 4.11.

By using a recurrent network, we aim at providing a kind of memory for these

agents. Thus, our goal is to enable them to consider the duration span of

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 74

a traffic light in a specific color. Therefore, the input layer consists of three

neurons.

Figure 4.11: Adaptive Agent’s Neural Controller.

The effector task of an Adaptive Agent consists in sending the network

outputs to the microcontroller board. The outputs are a value associated with

the traffic light color and a value to be send to its neighbor. Although the light

color is only red or green, the color output can be a value in the closed interval

[0,1]. If the color output value is less than 0.6, the color light will be red. Else,

the segment has to send this value to the respective node as a request.

The middle layer of the neural network has two neurons to connect the

input and output layers. These neurons provide associations among sensors and

actuators (see Section 2.4). These associations represent the system policies

changing according to the encoded neural network configuration.

At the beginning of the simulation, the messages exchanged between

neighbors have no meaning. Moreover, a road segment agent is dumb and does

not know how to use the collected data to make a decision on the setting of

the traffic light color. Therefore, we configured the Observer Agent to perform

an adaptive process. It will adjust the parameters of the neural network in

order to find a solution for relating inputs (message received, vehicleRate, and

currentColor) and outputs (message to send and traffic light color).

ObserverAgent: Adaptive process

Evolutionary algorithms have been applied to provide the design of

system features automatically (see Section 2.5.1). By using a genetic algorithm,

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 75

we expect that a light policy, sporting a simple communication system among

road segments, will emerge from this experiment. Therefore, no system feature

was specified at design-time (e.g. a communication system, the effect of vehicle

rate on road segment decision).

The evaluation and adaptation process performed by the Observer Agents

is depicted in Figure 4.12.

Figure 4.12: Performing an adaptive process to ajust the Traffic Neural
Controller weights. Figure adapted from (Nolfi and Gigliotta, 2010). P.7.

The weights of the neural network used by the Adaptive Agents vary

during the adaptive process. The ObserverAgent applies a genetic algorithm to

find a better solution. It contains a pool of candidates to represent the network

parameters. The ObserverAgent evaluates each one of them according to the

number of cars that concluded their routes after the end of the simulation.

4.3.2
First Experiment

The first simulation scenario is depicted in Figure 4.13. We have created

the urban road network scenario based on a small section of a real city, Feira de

Santana, Bahia, Brazil. This chart is composed of 31 nodes and 48 segments.

Each segment links two nodes having only one-way direction. For simulation

purpose, we established 15 nodes as departures (yellow points) and two as

targets (red points). Each segment has a traffic light. In the graph, the green

and red triangles represent the traffic light colors.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 76

Figure 4.13: Simulation Urban Road Network. Adapted from Waze (2014)
(MOBILE, 2014).

We started with 1000 vehicles for this experiment. The capacity of each

road segment in this experiment is 75 vehicles. As we described before, the

only role of the vehicles is to try to end their routes.

Evolutionary Algorithm: Simulation Parameters

Given that we are proposing a simple experiment, the evolutionary

process lasts only 20 generations (i.e. the process of testing, selecting and

reproducing candidates is iterated 20 times). During the test stage, each team

of 48 Adaptive Agents (i.e. the number of road segments in the scenario) is

allowed to “live” for 30 cycles by using a candidate, as shown in Figure 4.12.

As each car departure and target are randomly selected and can affect the test

result, more than one test is performed for each candidate.

The fitness of each candidate consists of the number of vehicles that

concluded their route after the simulation ended.

The individuals with the highest fitness are selected to generate the new

generation by using crossover and mutation (see Section 2.3). Figure 4.14

illustrates the evolutionary configuration file that was used to set the algorithm

in our experiment.

Simulation Results

After executing the evolutionary algorithm, Adaptive Agents evolve the

ability to find a satisfactory logical of traffic light decision in order to improve

urban traffic flow.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 77

Figure 4.14: The configuration file for the evolutionary algorithm.

We aim at evaluating the best solution during the training period.

Figure 4.15 illustrates the best individual of each generation (i.e. the candidate

with the highest fitness value). Normally, the individual with the highest fitness

presents performance better than the others. Accordingly, we selected two

individuals in the graph to investigate their solutions (i.e., how the Adaptive

Agents act by using their neural configurations): (i) the best of the second

generation (point A), and (ii) the best of all generations (point B).

Figure 4.15: Simulation Results - Best Fitness.

The best candidate of the second generation (point A) provided the

following solution: road segment always try to set its traffic light to green. Thus,

if the road segment is not situated in a intersection, its traffic light remains

green during all the simulation. The segments comprising an intersection make

decisions based only on the vehicles rate and the current traffic light color.

We conclude that they do not take messages into consideration for making

decisions.

By configuring the neural network with the best candidate representation

(point B), each road segment displays the following solution:

– if it is not in a intersection, set its traffic light color to green.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 78

– if its current traffic light color is green, it increases the light color output

(so the road intersection will prioritize this segment)

– if its traffic light color is red and the vehicle rate is close to its maximum,

send message “1.0” to its neighbor

– if it receives the message “1.0”, and the vehicle rate is not close to its

maximum, then it decreases the light color output (loosing priority in

the road intersection’s decision)

Road Segments in a intersection seem to use a simple communication

system to ‘negotiate’ the light color scheduling. First they “analyze” the

current color of their traffic light. The priority is given for the agent that

already has the traffic light set to green, except when the traffic light of the

other agent is red and its vehicle rate is considerably higher.

The candidates performed many other solutions along the evolutionary

process. An example of strategy is to block agents that are situated in a full

road segment (i.e. a segment showing the maximum number of cars). If the

vehicle rate in a segment reached its maximum and its actual traffic light

color is red, the traffic light color remains red. Some of these behaviors are

lost during evolution, since only those that showed a higher number of cars

concluding their routes remained during evolution.

Evaluation of the Best Candidate

We selected the best candidate from the evolutionary process to provide

comparisons between our approach and “conventional” traffic light policies. We

have been considering as conventional the normal way to control traffic lights,

the so called fixed-time control. This type of control fixes the sequence of phases

(red or green) and their durations (Prothmann et al., 2011). We simulated two

fixed-time approaches. The former changes all traffic lights colors in every

cycle. The latter changes all the traffic lights colors at the intersections every

two cycles, and sets the others green for 5 cycles and then red for only one

cycle.

We executed the simulation three times, using the best solution presented

above and each one of the two “conventional” solutions. Figure 4.16 presents

the number of vehicles that concluded their routes.

To estimate how generic is our approach, we will now apply this best

solution to a new scenario.

The new simulation scenario is depicted in Figure 4.17. We selected the

Copacabana neighborhood, one of the most congested areas of the city of Rio

de Janeiro, that has a large number of scattered traffic lights. The simulated

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 79

Figure 4.16: Comparison of the FIoT approach and conventional systems in
the first scenario.

scenario takes the actual directions of the roads into account, but the amount

of traffic lights does not correspond to reality.

Figure 4.17: The second scenario - Copacabana - RJ -BR. The car 9’s route.
Adapted from Waze (2015) (MOBILE, 2014).

We initialized 1000 vehicles for this experiment and increased the capac-

ity of road segments to a 100. As the scenario got larger, we increased the

simulation time to 40 cycles (40 minutes).

As shown in Figure 4.17, we illustrated the smallest route calculated for

car 9, situated in road 2 (as pointed in the graph) aiming at reaching road

30 (the red arrow). Using our approach, this car spent 17 cycles to reach its

target. By testing the first fixed-time control (classic 1 approach), the same

car spent 34 cycles to conclude its route. Figure 4.18 illustrates a comparison

between our solution and the fixed-time approaches in this new scenario.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 80

Figure 4.18: Comparison of the FIoT approach and conventional systems in
the second scenario.

Design-Time Adaptation

IoT-connected traffic elements have other goals besides cutting traffic

delays. One of these goals is to boost public transport. So, we assume that

traffic engineers have decided to prioritize bus flow. Thus, the overall objective

of this new experiment is to maximize the number of buses that conclude their

route in a specific period of time.

The road segments are able to classify vehicles such as cars and buses (a

new sensor to provide the bus flow rate). Thus, we create a new controller to

be used by Adaptive Agents, as shown in Figure 4.19.

Figure 4.19: Agent’s Neural Controller.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 81

The Observer Agent has to execute the evolutionary process again. To

emphasize solutions found during the evolutionary process that gave priority

to the bus flow, the Observer Agent calculates the fitness of each team of

Adaptive Agents according to the equation 4-1. It consists of the sum of the

number of cars and (100X) the number of buses that concluded their route

after the end of the simulation.

fitnessi = numCars + (100 ∗ numBuses) (4-1)

From the 1000 vehicles initialized in previous experiments, we now

initialized 800 cars and 200 buses. After running the evolutionary process,

the Observer Agent found a new solution to solve this new problem.

Now, in addition to the classical approaches presented above, we used

a new approach to compare our solution. Some researcher proposals (Evans

and Skiles, 1970; Al-Sahili and Taylor, 1996; Jacobson and Sheffi, 1981) aim

at improving public transit through bus preemption of traffic lights. This

approach is the same that is commonly used by ambulances. Normally, an

ambulance’s driver has a device to set traffic lights to green. To simulate it in

our scenarios, we enable all road segments to set their traffic light colors to

green when detecting one or more buses.

Figures 4.20 and 4.21 present the results of the simulation in both sce-

narios, comparing the number of vehicles (cars and buses) that had concluded

their routes resulting from the “conventional” solutions and the evolved agent

approach.

Figure 4.20: Comparison of the evolved agents approach and conventional
systems in the first scenario.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 82

Figure 4.21: Comparison of the evolved agents approach and conventional
systems in the second scenario.

By using the evolved agents approach, the number of buses that con-

cluded their routes is higher than using other approaches.

Discussion

Although we considered only a few factors to make decisions about setting

the traffic light colors in the experimental examples that we presented here:

the vehicle flow, the previous traffic light color, and a neighborhood interaction

mechanism, even for a traffic expert, to set a satisfactory strategy based only

on these factors would be a complicated task. If we had taken all of the other

conditions into account, such as the number of pedestrians and ambulances,

messages from cars and road problems, the problem would be impossible to be

solved by a human.

Our experiment showed that FIoT allows the creation of a controller to

determine traffic light policies automatically. We described the results of this

experiments in which a simple communication system arises among a collection

of initially non-communicating things, evolved in order to decrease congestion.

From the results, we also showed that road segments that evolved for

maximizing traffic flow in a specific scenario can be ported as it is to a new

environment and still obtain satisfactory results. In addition, we presented

comparisons between our approach and “conventional” traffic control systems

in two scenarios. In both scenarios, the number of vehicles that had concluded

their routes based on the FIoT approach was twice as high.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 83

4.4
A Future Instance: Quantified US

In this section, we show another FIoT’s instance to be prototyped in the

future. We briefly describe it and show in section 4.5 how it can be generated

by filling the variable points of the framework.

Firstly, we design this application as an individual self-tracking tool.

Then, we show that by changing the variable points of FIoT, we can extend

this application to model a Quantified Us instance.

The next subsection describes the device that we intend to use in such

instances.

4.4.1
Physical Layer: Modeling the device

The popularization of microelectronics has boosted the creation of many

specialized devices, such as Fitbit pedometers, Apple Watch (Apple, 2014),

myZeo sleep, Oura ring, and Nike + and Jawbone UP fitness trackers (Swan,

2013; Labs, 2014). Most devices use air quality sensor, heart rate sensor,

biomedical electrodes, blood pressure measure, GPS and accelerometer tech-

nologies (Apple, 2014; Labs, 2014).

As a result, a lot of applications that collect, report, and respond to

information from the user’s own body have already been developed. People

measure and understand more about their sleep quality, health, exercise

performance, and many all-day activities. Consequently, people have been

shifting from passive to active participants in diagnosis and preventive care

(Hirsch, 2015).

However, none of the known gadgets take flatulences and other gases

daily emitted by humans into account. Most people pass gas 13 to 21 times

a day (Diabetes et al., 2015), and these emissions tell a lot about a person’s

health (Pimentel et al., 2012).

Moreover, a person emits various gases from different parts of the body.

These gases may be related to different diagnostics (Mathew et al., 2015;

Pimentel et al., 2012; Tangerman, 2009; Franciosa, 1977; Hirakoba et al., 1992).

We list a few in Figure 4.22.

Passing gas through the mouth is called belching, burping, or eructation.

Passing gas through the anus is called flatulence (Diabetes et al., 2015) that

usually contains nitrogen, hydrogen, carbon dioxide, oxygen, and methane

(Tangerman, 2009; Suarez et al., 1998).

As a future work, this device will consist of an Arduino couple with gas

sensors for the detection of hydrogen, methane and carbon dioxide.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 84

Figure 4.22: Relation between gases emitted and diagnoses.

4.4.2
Quantified Self Approach

Our aim is to propose the design of a simple self-tracking application to

allow a user to collect and measure her gases. Based on the collected data, we

believe that a person will be able to analyze the following characteristics:

– The amount of gas may be related to the certain types of food. “Foods

that produce gas in one person may not cause gas in another” (Diabetes

et al., 2015). By using this information, a person will investigate which

food types cause such problem. Accordingly, she will take the appropriate

decisions to reduce the amount of gas, such as to avoid specific aliments,

especially milk products given that she has lactose intolerance (Diabetes

et al., 2015).

– The amount of methane and hydrogen in her farts may be related to

some diseases: According to the authors in (Pimentel et al., 2012), “the

prevalence of methane over hydrogen in human farts may correlate with

obesity, constipation and irritable bowel syndrome.” If her flatulence has

these characteristics, she should look for a health care provider.

Based on the research presented in (Pimentel et al., 2012), this appli-

cation will limit itself to collecting the amount of gases and, if it is the case,

suggesting a diagnosis of irritable bowel syndrome.

Given that each person has its own numbers and does not share them

with the others, the system tracks only one individual, requiring only one

Adaptive Agent. This agent collects data and provides an advice based on a

simple “if-statement” control, as depicted in Figure 4.23.

Given the simplicity of the application, the Observer Agent does nothing.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 85

Figure 4.23: Future Instance: QS model.

4.4.3
Quantified Us Approach

According to the aforementioned references the relation between the

gases that we emit and diseases should be further investigated. Thus, we do

not have enough data to program an all encompassing ”if-statement” control

for covering more diseases.

The idea behind the Quantified Us Approach is that this application

can be improved by providing it with knowledge sharing and collective-level

classification features. Figure 4.24 illustrates the model that we are suggesting

for this “Quantified Us” experiment (similar to the “Quantified Things”

model).

In this case, the user will directly set two neural inputs: the type of

problem to be diagnosed (e.g., lactose intolerance) and the information about

the last meal (e.g., milk, bean, soft drink). As an output, the system will show

the user’s chance of having the selected problem type.

4.5
How the generated applications adhere to FIoT

This section presents how the applications listed above adhere to the

proposed framework by filling the main variable parts: controller creation by

the Framework user, leaving to the Observer Agent the system evaluation and

the controller adaptation.

Table 4.6 shows how “Quantified Things” applications adhere to the

Framework, extending FIoT’s flexible points. A dataset provided by a group

of agents fills the “making evaluation” hotspot developed for this applications.

The Observer Agent evaluates a dataset containing input from Adaptive

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 86

Figure 4.24: Future Instance: QU model.

Agents and neural predictions. Based on this historical data, the Observer

Agent calculates the error standard deviation of a set of data. Then, it evaluates

whether it is necessary to generate a collective adaptation.

Table 4.6: Instance I: Flexible Points

Framework Application

Controller Three Layer Neural Network

Making Evaluation Evaluation of a Group of Adap-

tive Agents: for a evaluated

group, the Observer Agent con-

cludes if all Adaptive Agents need

to adapt or not

Controller Adaptation Supervised Learning (Backpropa-

gation)

The Table 4.7 shows how the “Car Traffic Control” application adhere

to the proposed framework, extending the FIoT flexible points.

Figure 4.25 illustrates a comparison between these approaches. It also

depicts a briefly technical description of how the applications’ controllers

implemented the main variable methods. As we explained in section 3.5, all

controllers have to implement the methods getOutput() and change(). The

first method provides an output after receiving an input. Adaptive Agents

use this method on decision activity. The second method is accessed by the

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 87

Table 4.7: Instance II: Flexible Points

Framework Application

Controller Three Layer Neural Network

Making Evaluation Collective Fitness Evaluation:

Test a pool of candidates to rep-

resent the network parameters.

For each candidate, it evalu-

ates the collection of Adaptive

Agents, comparing fitness among

candidates

Controller Adaptation Evolutionary Algorithm: Gener-

ate a pool of candidates to rep-

resent the network parameters

ObserverAgent during the adaptation process to change the configuration of

the controller used by Adaptive Agents. For example, if a framework user

chooses to create an application by using neural network and genetic algorithm,

while Adaptive Agents will use the neural network controller to calculate an

output, the Observer Agent will execute the genetic algorithm to adapt the

neural network by changing its weights.

Figure 4.25: How the generated applications fill the main variable parts of
FIoT.

We also provide a picture to illustrate how we imagine that the Quan-

tified Self application and its extension can be instantiated by using FIoT.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 4. Evaluation: Illustrative Examples 88

Figure 4.26 depicts how these future applications will be generated by filling

the variable points of the framework.

Figure 4.26: A comparison between Quantified Self and Quantified Us in-
stances’ design.

4.5.1
Discussion

If we decided to create a traffic application by using a neural network

and back-propagation algorithm, for example, we would have to provide an

input-output mapping dataset based on several classification of traffic regime

policies. Quantified Things experiments require continuous adaptation at run-

time. Therefore, genetic algorithm could not be a good solution, since this

algorithm execution is slow and is normally applied to offline adaptations.

Thus, it is important to investigate and select techniques that can be designed

to fit a particular application.

In this chapter, we evaluated our proposed approach in two types of

applications: (i) Quantified Bananas, using a predictive system, and (ii) Car

Traffic Application, using a distributed control. For both applications, we

tested various scenarios and showed how our approach of self-adaptation can

provide pertinent solutions.

In addition, we presented a future application and described how it can

be instantiated by using FIoT.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



5
Conclusion

The area of Agent Oriented Software Engineering (AOSE) has so far

addressed only small scale and even toy applications. We showed in this dis-

sertation that a self-organizing and adaptive multi-agent software framework

can be designed and implemented to derive now-a-days complex applications

while doing so in an effective way. Software frameworks are domain oriented

and we have chosen the Internet of Things (IoT) as such domain.

IoT applications are increasingly complex and require scalability beyond

billions of devices and the ability to cope with environments that are in

continuous transition. IoT is an emergent technology which has the potential

for significant impact (Stamford, 2014). Self-organizing and self-adapting IoT

multi-agent applications are an important evidence to show that agent oriented

IoT assistants are an original contribution to both AOSE and IoT. The breath

and relevance of MAS associated with Software Engineering to solve real world

problems is the evidence we used to support our above claims.

We know of few research results in the literature about agent-based

architectures for Internet of Things (Fortino et al., 2013; Lopez and Pérez,

2012). None of them presents the design of a complex case study (i.e. using a

vast number of cooperative things). Thus these works do not show efficiency in

wide scenarios, where things must cope with a changing environment and where

a sophisticated organization system is required. Therefore, important features

mentioned on our work regarding self-organization and self-adaptation are not

covered by the related literature. On the other hand, we found several effective

experiments in the Robotic Agents literature about complex autonomous

physical systems (as swarm of robots). We used in our approach assumptions

made by those studies regarding self-adaptive and self-organizing properties

for physical agents domain.

We provided two instances of our proposed agent-based framework for

the IoT domain: (i)quantified bananas; and (ii)traffic light control. Through

those instances we have showed that our agent-based general software system

satisfies its main goals:

– Autonomous things;

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 5. Conclusion 90

– Things that are able to cooperate and execute complex behavior

without the need for centralized control to manage their interaction.

– Things that are able to have behavior assigned at design-time

and/or at run-time.

– Feasible modelling characteristics;

– It is possible to use our framework model to deal with complex

problems in considerable time.

– In particular, it is possible during the design phase, that one does

not need to be concerned with the application domain.

5.1
Evaluation and Future Works

We implemented a framework named “FIoT” to facilitate the develop-

ment process of IoT applications. We showed that FIoT has a generality po-

tential, since we derived two completely different IoT applications from it. The

former allows a human administrator to monitor and quantify things and the

latter provides a dynamic controller to manage things in a distributed system.

We also showed that these applications are able of self-adapting and im-

proving their functionalities at design-time, but they cannot adapt at runtime

yet. Nevertheless, during this dissertation we presented the fundamentals to

improve our framework to meet such requirement. We aim at introducing new

controller types, such as state machines and temporal neural networks, as well

as creating new applications to illustrate the use of them and show their ben-

efits.

We believe that as FIoT matures, it will be able to support the devel-

opment of more complex and realistic IoT applications, especially in actual

distributed environments. As future work, we want to investigate the general-

ization capacity of our proposed framework and its application limits. As such,

we need to evaluate FIoT by taking the following criteria into account:

– To investigate different applications types from prediction and control to

discover which IoT application types can be created by using FIoT;

– To investigate different techniques from back-propagation and genetic

algorithm to discover which types of adaptive techniques can be used;

– To evaluate which types of control can be used to meet the requirements

imposed by the FIoT’s controller abstract class. In addition, we have to

investigate the adaptive techniques that are suitable with each proposed

control.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 5. Conclusion 91

– To investigate which IoT applications require adaptation and the types

of (self)adaptations that are useful for them.

As a result, new FIoT requirements and hot spots can appear. For

example, a further application may require the management of heterogeneous

environments and devices. Thus, to enable the production of new instances,

we will probably need to increase the FIoT domain coverage and create new

hot spots.

The centralized architecture is the major problem on God Agent spec-

ifications. There is only one God for each application. It may be a problem

for applications that requires multiples devices connecting simultaneously. In

future works, we can investigate existing discovery services architectures to

provide FIoT applications with self-discovery protocols and more scalability.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



6
Bibliography

AL-SAHILI, K.; TAYLOR, W. Evaluation of bus priority signal strategies in ann ar-

bor, michigan. Transportation Research Record: Journal of the Transporta-

tion Research Board, Transportation Research Board of the National Academies,

n. 1554, p. 74–79, 1996.

APPLE. Watch. December 2014. Https://www.apple.com/br/watch/.

ARDUINO. Arduino. December 2014. Http://www.arduino.cc/.

ATZORI, L.; IERA, A.; MORABITO, G. The internet of things: A survey. Com-

puter networks, Elsevier, v. 54, n. 15, p. 2787–2805, 2010.

BABAOGLU, O.; SHROBE, e. H. First IEEE International Conference on

Self-Adaptive and Self-Organizing Systems (SASO 2007). Boston, MA,

USA, 9-11 July 2007.

BABAOGLU, O.; SHROBE, e. H. Ninth IEEE International Conference on

Self-Adaptive and Self-Organizing Systems (SASO 2015). Cambridge, MA,

USA, 21-25 September 2015.

BANDYOPADHYAY, D.; SEN, J. Internet of things: Applications and challenges in

technology and standardization. Wireless Personal Communications, Springer,

v. 58, n. 1, p. 49–69, 2011.

BARRETT, M. A. et al. Big data and disease prevention: From quantified self to

quantified communities. Big data, Mary Ann Liebert, Inc. 140 Huguenot Street,

3rd Floor New Rochelle, NY 10801 USA, v. 1, n. 3, p. 168–175, 2013.

BELEW, R. K.; MCINERNEY, J.; SCHRAUDOLPH, N. N. Evolving networks:

Using the genetic algorithm with connectionist learning. In: CITESEER. In. [S.l.],

1990.

BELLIFEMINE, F. et al. Jade Administrator’s Guide.

jade.tilab.com/doc/administratorsguide.pdf, 2007.

BELLIFEMINE, F. et al. Jade Programmer’s Guide.

jade.tilab.com/doc/programmersguide.pdf, April 2010.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 6. Bibliography 93

BEYDEDA, S.; BOOK, M.; GRUHN, V. Model-Driven Software Development.

[S.l.]: Springer-Verlag Berlin Heidelberg, 2005.

BOE, A.; SALUNKHE, D. Ripening tomatoes: ethylene, oxygen, and light treat-

ments. Economic Botany, Springer, v. 21, n. 4, p. 312–319, 1967.

BOHLI, J.; LANGENDORFER, P.; SKARMETA, A. F. Security and privacy chal-

lenge in data aggregation for the iot in smart cities. Internet of Things: Con-

verging Technologies for Smart Environments and Integrated Ecosystems,

River Publishers, p. 225–244, 2013.

BRIOT, J.-P. et al. Experience and prospects for various control strategies for

self-replicating multi-agent systems. In: ACM. Proceedings of the 2006 inter-

national workshop on Self-adaptation and self-managing systems. [S.l.],

2006. p. 37–43.

BROOKS, R. A. Intelligence without reason. The artificial life route to arti-

ficial intelligence: Building embodied, situated agents, Lawrence Erlbaum

Associates Hillsdale, New Jersey, p. 25–81, 1995.

CARLINO, D. et al. Approximately orchestrated routing and transportation ana-

lyzer: Large-scale traffic simulation for autonomous vehicles. In: IEEE. Intelligent

Transportation Systems (ITSC), 2012 15th International IEEE Conference

on. [S.l.], 2012. p. 334–339.

CETNAROWICZ, K.; KISIEL-DOROHINICKI, K.; NAWARECKI, E. The applica-

tion of evolution process in multi-agent world to the prediction system. In: Second

International Conference on Multiagent Systems. [S.l.: s.n.], 1996. p. 26–32.

CHEN, B.; CHENG, H. H.; PALEN, J. Mobile-c: a mobile agent platform for mobile

c/c++ agents. Software: Practice and Experience, Wiley Online Library, v. 36,

n. 15, p. 1711–1733, 2006.

DIABETES, N. I. of; DIGESTIVE; NIH, K. D. Medline-

Plus: Trusted Health Information for You. August 2015.

Https://www.nlm.nih.gov/medlineplus/gas.html.

DORIGO, M. et al. Evolving self-organizing behaviors for a swarm-bot. Au-

tonomous Robots, Kluwer Academic Publishers, v. 17, n. 2-3, p. 223–245, 2004.

ISSN ISSN:0929-5593.

DUMAS, M.; HOFSTEDE, A. ter. Uml activity diagrams as a workflow specifica-

tion language. In: UML 2001 — The Unified Modeling Language. Modeling

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 6. Bibliography 94

Languages, Concepts, and Tools. [S.l.]: Springer Berlin Heidelberg, 2001. p.

76–90.

ERIKSSON, M. An approach to software product line use case modeling.

Datavetenskap, 2006.

EVANS, H.; SKILES, G. Improving public transit through bus preemption of traffic

signals. Traffic Quarterly, v. 24, n. 4, 1970.

FANTANA, N. et al. Iot applications–value creation for industry. Internet of

Things: Coverging Technologies for Smart Envorinments and Integrated

Ecosystems, p. 153–206, 2013.

FAYAD, M. E.; SCHMIDT, D. C.; JOHNSON, R. E. Building application frame-

works: object-oriented foundations of framework design. John Wiley & Sons, Inc.,

1999.

FIPA. The Foundation for Intelligent Physical Agents. 08 2015.

Http://www.fipa.org/.

FLOREANO, D.; MATTIUSSI, C. Bio-Inspired Artificial Intelligence. Theo-

ries, Methods, and Technologies. [S.l.]: Cambridge: MIT Press, 2008.

FLOREANO, D. et al. Evolutionary conditions for the emergence of communication

in robots. Current biology, Elsevier, v. 17, n. 6, p. 514–519, 2007.

FLOREANO, D.; URZELAI, J. Evolutionary robots with on-line self-organization

and behavioral fitness. Neural Networks, Elsevier, v. 13, n. 4, p. 431–443, 2000.

FORTINO, G. et al. An agent-based middleware for cooperating smart objects. In:

Highlights on Practical Applications of Agents and Multi-Agent Systems.

[S.l.]: Springer Berlin Heidelberg, 2013. p. 387–398.

FORTINO, G.; GUERRIERI, A.; RUSSO, W. Agent-oriented smart objects devel-

opment. In: IEEE International Conference on Computer Supported Coop-

erative Work in Design (CSCWD). [S.l.: s.n.], 2012.

FORTINO, G. et al. Middlewares for smart objects and smart environments:

Overview and comparison. In: Internet of Things Based on Smart Objects:

Technology, Middleware and Applications. [S.l.]: Springer, 2014. p. 1–29.

FORTINO, G.; TRUNFIO, P. Internet of Things Based on Smart Objects:

Technology, Middleware and Applications. [S.l.]: Springer, 2014.

FRANCIOSA, J. Evaluation of the co2 rebreathing cardiac output method in

seriously ill patients. Circulation, Am Heart Assoc, v. 55, n. 3, p. 449–455, 1977.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 6. Bibliography 95

GAUNT, K.; NACSA, J.; PENZ, M. Baby lucent: pitfalls of applying quantified self

to baby products. In: ACM. CHI’14 Extended Abstracts on Human Factors

in Computing Systems. [S.l.], 2014. p. 263–268.

GOUMOPOULOS, C.; KAMEAS, A. Smart objects as components of ubicomp ap-

plications. International Journal of Multimedia and Ubiquitous Engineering,

2009.

GUBBIA, J. et al. Internet of things (iot): A vision, architectural elements, and

future directions. Future Generation Computer Systems, v. 29, p. 1645–1660,

2013.

HAVENS, J. Hacking Happiness: Why Your Personal Data

Counts and How Tracking it Can Change the World. Pen-

guin Publishing Group, 2014. ISBN 9781101621950. Dispońıvel em:

<https://books.google.com.br/books?id=rRQLZTnkUpYC>.

HAYKIN, S. Neural Networks: A Comprehensive Founda-

tion. Macmillan, 1994. ISBN 9780023527616. Dispońıvel em:

<http://books.google.com.br/books?id=PSAPAQAAMAAJ>.

HIRAKOBA, K. et al. Effect of endurance training on excessive co2 expiration due

to lactate production in exercise. European journal of applied physiology and

occupational physiology, Springer, v. 64, n. 1, p. 73–77, 1992.

HIRSCH, L. Wearable Tech, CES2015, and the Quantified Self of

Healthcare. January 2015. Http://www.healthcaresuccess.com/blog/physician-

marketing/wearable-tech-ces2015-quantified-self.html.

HORN, P. Autonomic computing: Ibm\’s perspective on the state of information

technology. IBM, 2001.

HP. Adaptive Enterprise: Infrastructure and management solutions for the

adaptive enterprise. [S.l.], 2003.

HUDSON, J.; DENZINGER, J. Risk management for self-adapting self-organizing

emergent multi-agent systems performing dynamic task fulfillment. Autonomous

Agents and Multi-Agent Systems, Springer, p. 1–50, 2014.

JACOB, B. et al. A practical guide to the IBM autonomic computing toolkit.

[S.l.]: IBM, International Technical Support Organization, 2004.

JACOBSON, J.; SHEFFI, Y. Analytical model of traffic delays under bus signal

preemption: theory and application. Transportation Research Part B: Method-

ological, Elsevier, v. 15, n. 2, p. 127–138, 1981.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 6. Bibliography 96

JAEGER, T.; METZGER, A. Open-source-Software. [S.l.]: Beck, 2002.

JARIYASUNANT, J. et al. The quantified traveler: Using personal travel data to

promote sustainable transport behavior. University of California Transporta-

tion Center, 2011.

JOHNSON, D.; HIPPS, N.; HAILS, S. Helping Consumers Reduce Fruit and

Vegetable Waste: Final Report. [S.l.]: WRAP, 2008.

KAWSAR, F. et al. Design and implementation of a framework for building

distributed smart object systems. Supercomputing, 2010.

KEPHART, J. O. Research challenges of autonomic computing. In: IEEE. Soft-

ware Engineering, 2005. ICSE 2005. Proceedings. 27th International Con-

ference on. [S.l.], 2005. p. 15–22.

KEPHART, J. O.; CHESS, D. M. The vision of autonomic computing. Computer,

IEEE, v. 36, n. 1, p. 41–50, 2003.

KUNIAVSKY, M. Smart Things: Ubiquitous Computing User Experience

Design Book. [S.l.]: Morgan Kaufmann, 2010.

KUURKOVA, V. Kolmogorov’s theorem and multilayer neural networks. Neural

networks, Elsevier, v. 5, n. 3, p. 501–506, 1992.

LABS, Q. S. Quantified Self Guide to self-tracking tools. 2014.

Http://quantifiedself.com/guide/.

LEE, D.; YANNAKAKIS, M. Principles and methods of testing finite state

machines-a survey. Proceedings of the IEEE, IEEE, v. 84, n. 8, p. 1090–1123,

1996.

LI, I.; DEY, A.; FORLIZZI, J. A stage-based model of personal informatics systems.

In: ACM. Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. [S.l.], 2010. p. 557–566.

LOPEZ, P.; PéREZ, G. Collaborative agents framework for the internet of things.

In: Ambient Intelligence and Smart Environments. [S.l.: s.n.], 2012. p. 191–

199.

LUCENA, C. Software engineering for multi-agent systems II: research

issues and practical applications. [S.l.]: Springer Science & Business Media,

2004.

LUPTON, D. Self-tracking modes: Reflexive self-monitoring and data practices.

Available at SSRN 2483549, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 6. Bibliography 97

LYYTINEN, K.; YOO, Y. Ubiquitous computing. Communications of the ACM,

v. 45, n. 12, p. 63–96, 2002.

MARKIEWICZ, M. E.; LUCENA, C. J. P. de. Object oriented framework develop-

ment. Crossroads, ACM, New York, NY, USA, v. 7, n. 4, p. 3–9, jul. 2001. ISSN

1528-4972. Dispońıvel em: <http://doi.acm.org/10.1145/372765.372771>.

MAROCCO, D.; NOLFI, S. Emergence of communication in embodied agents

evolved for the ability to solve a collective navigation problem. Connection

Science, 2007.

MARZO, G. D. et al. Engineering Self-Organising Systems. Berlin: Springer,

2004.

MASSEN, T. von der; LICHTER, H. Modeling variability by uml use case dia-

grams. In: CITESEER. Proceedings of the International Workshop on Re-

quirements Engineering for product lines. [S.l.], 2002. p. 19–25.

MASSERA, G. et al. Designing adaptive humanoid robots through the

FARSA open-source framework. [S.l.], 2013.

MASSERA, G. et al. Farsa: An open software tool for embodied cognitive science.

In: Advances in Artificial Life, ECAL. [S.l.: s.n.], 2013. v. 12, p. 538–545.

MATHEW, T. L. et al. Technologies for clinical diagnosis using expired human

breath analysis. Diagnostics, Multidisciplinary Digital Publishing Institute, v. 5,

n. 1, p. 27–60, 2015.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, Springer, v. 5, n. 4,

p. 115–133, 1943.

MICROSOFT. Microsoft Dynamic Systems Initiative Overview. [S.l.], 2004.

MILLER, G. F.; TODD, P. M.; HEGDE, S. U. Designing neural networks using

genetic algorithms. In: MORGAN KAUFMANN PUBLISHERS INC. Proceedings

of the third international conference on Genetic algorithms. [S.l.], 1989. p.

379–384.

MITCHELL, S. et al. The internet of everything for cities: Connecting

people, process, data, and things to improve the ‘Livability’ of cities and

communities. 2013.

MOBILE, W. Waze. dispońıvel em:¡ https://www. waze. com/pt-br¿. Acesso em,

v. 2, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 6. Bibliography 98

MÖLLER, D. P. Introduction to Transportation Analysis, Modeling and

Simulation. [S.l.]: Springer, 2014.

MPELKAS, C.; KENYON, E. THE EFFECT OF LIGHT QUALITY ON THE

RIPENING OF DETACHED TOMATO FRUIT. [S.l.], 1972.

MÜLLER-SCHLOER, C. Organic computing: on the feasibility of controlled emer-

gence. In: ACM. Proceedings of the 2nd IEEE/ACM/IFIP international

conference on Hardware/software codesign and system synthesis. [S.l.],

2004. p. 2–5.

MüHLHäUSER, M. Smart products: An introduction. Communications in Com-

puter and Information Science, 2008.

NELSON, A.; BARLOW, G.; DOITSIDIS, L. Fitness functions in evolutionary

robotics: A survey and alasysis. Robotics and Autonomous Systems, 2007.

NETO, B. et al. JAAF: A framework to implement self-adaptive agents. In: Inter-

national Conference on Software Engineering and Knowledge Engineering.

[S.l.: s.n.], 2009.

NOLFI, S. Laboratory of Autonomous Robotics and Artificial Life.

http://laral.istc.cnr.it/, March 1995.

NOLFI, S.; FLOREANO, D. Co-evolving predator and prey robots: Do ‘arms

races’ arise in artificial evolution? 1998.

NOLFI, S.; FLOREANO, D. Evolutionary Robotics: The Biol-

ogy,Intelligence,and Technology of Self-Organizing Machines. Cambridge,

MA, USA: MIT Press, 2000. ISBN 0262140705.

NOLFI, S.; GIGLIOTTA, O. Evorobot*. In: Evolution of communication and

language in embodied agents. [S.l.]: Springer, 2010. p. 297–301.

NOLFI, S.; PARISI, D. Learning to adapt to changing environments in evolving

neural networks. In: Adaptive Behavior. [S.l.: s.n.], 1997. p. 75–98.

PANAIT, L.; LUKE, S. Cooperative multi-agent learning: The state of the art.

Autonomous Agents and Multi-Agent Systems, Kluwer Academic Publishers,

Hingham, MA, USA, v. 11, n. 3, p. 387–434, nov. 2005. ISSN 1387-2532.

Dispońıvel em: <http://dx.doi.org/10.1007/s10458-005-2631-2>.

PARISI, D.; NOLFI, S. Laboratory of Autonomous Robotics and Artificial

Life. 1994. Website.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 6. Bibliography 99

PARK, J. et al. Information Technology Convergence: Security,

Robotics, Automations and Communication. Springer, 2013. (Lecture

Notes in Electrical Engineering). ISBN 9789400769960. Dispońıvel em:

<https://books.google.com.br/books?id=6sbEBAAAQBAJ>.

PĚCHOUČEK, M.; MAŘ́IK, V. Industrial deployment of multi-agent technologies:

review and selected case studies. Autonomous Agents and Multi-Agent

Systems, Springer, v. 17, n. 3, p. 397–431, 2008.

PEZZULO, G. et al. Research on cognitive robotics at the institute of cognitive sci-

ences and technologies, national research council of italy. Cognitive processing,

Springer-Verlag, v. 12, n. 4, p. 367–374, 2011.

PFEIFER, R.; BONGARD, J. How the body shapes the way we think: a new

view of intelligence. [S.l.]: MIT press, 2006.

PFISTER, C. Getting Started with the Internet of Things: Connecting

Sensors and Microcontrollers to the Cloud. 1st. ed. [S.l.]: O’Reilly Media,

Inc., 2011. ISBN 1449393578, 9781449393571.

PIMENTEL, M. et al. Methanogens in human health and disease. The American

Journal of Gastroenterology Supplements, Nature Publishing Group, v. 1,

n. 1, p. 28–33, 2012.

PINTÉR-BARTHA, A.; SOBE, A.; ELMENREICH, W. Towards the

light—comparing evolved neural network controllers and finite state ma-

chine controllers. In: IEEE. Intelligent Solutions in Embedded Systems

(WISES), 2012 Proceedings of the Tenth Workshop on. [S.l.], 2012. p.

83–87.

POLANI, D. An informational perspective on how the embodiment can relieve

cognitive burden. In: IEEE. Artificial Life (ALIFE), 2011 IEEE Symposium

on. [S.l.], 2011. p. 78–85.

POSLAD, S. Specifying protocols for multi-agent systems interaction. ACM

Transactions on Autonomous and Adaptive Systems (TAAS), ACM, v. 2,

n. 4, p. 15, 2007.

PROTHMANN, H. et al. Organic traffic control. [S.l.]: Springer, 2011.

QUINN, M. et al. Evolving Controllers For A Homogeneous System Of

Physical Robots: Structured Cooperation With Minimal Sensors. 2003.

RIEL, A. J. Object-oriented design heuristics. [S.l.]: Addison-Wesley Reading,

1996.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 6. Bibliography 100

RIVERA-PELAYO, V. et al. A framework for applying quantified self approaches

to support reflective learning. Mobile Learning, 2012.

ROCHNER, F. et al. An organic architecture for traffic light controllers. In: GI

Jahrestagung (1). [S.l.: s.n.], 2006. p. 120–127.

RODRIGUES, P. et al. Zigzag: A middleware for service discovery in future internet.

In: Distributed Applications and Interoperable Systems. [S.l.]: Springer Berlin

Heidelberg, 2012. p. 208–221.

RUSSELL, S.; NORVIG, P. Artificial intelligence: a modern approach. 1995.

SERUGENDO, G. D. M. et al. A generic framework for the engineering of

self-adaptive and self-organising systems. [S.l.]: University of Newcastle upon

Tyne, Computing Science, 2007.

SERUGENDO, G. D. M.; GLEIZES, M.-P.; KARAGEORGOS, A. Self-organization

in multi-agent systems. The Knowledge Engineering Review, Cambridge Univ

Press, v. 20, n. 02, p. 165–189, 2005.

SETIONO, R. Feedforward neural network construction using cross validation.

Neural Computation, MIT Press, v. 13, n. 12, p. 2865–2877, 2001.

SOBE, A.; FEHéRVáRI, I.; ELMENREICH, W. Frevo: A tool for evolving and

evaluating self-organizing systems. In: IEEE Self-adaptive and Self-organizing

Systems Workshop. [S.l.: s.n.], 2012.

SOMMERVILLE, I. Software Engineering. Pearson/Addison-Wesley, 2004. (In-

ternational computer science series). ISBN 9780321210265. Dispońıvel em:

<http://books.google.com.br/books?id=fIJQAAAAMAAJ>.

STAMFORD, C. 2014 Hype Cycle for Emerging Technologies Maps the

Journey to Digital Business. http://www.gartner.com/newsroom/id/2819918,

August 2014.

STEELS, L. ECAGENTS: Embodied and Communicating Agents. [S.l.],

2004.

SUAREZ, F.; SPRINGFIELD, J.; LEVITT, M. Identification of gases responsible

for the odour of human flatus and evaluation of a device purported to reduce this

odour. Gut, BMJ Publishing Group Ltd and British Society of Gastroenterology,

v. 43, n. 1, p. 100–104, 1998.

SWAN, M. Sensor mania! the internet of things, wearable computing, objective

metrics, and the quantified self 2.0. Journal of Sensor and Actuator Networks,

v. 1, n. 3, p. 217–253, 2012.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 6. Bibliography 101

SWAN, M. The quantified self: fundamental disruption in big data science and

biological discovery. Big Data, Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd

Floor New Rochelle, NY 10801 USA, v. 1, n. 2, p. 85–99, 2013.

SWAN, M. Connected car: Quantified self becomes quantified car. Journal of

Sensor and Actuator Networks, Multidisciplinary Digital Publishing Institute,

v. 4, n. 1, p. 2–29, 2015.

TANGERMAN, A. Measurement and biological significance of the volatile sulfur

compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various bio-

logical matrices. Journal of Chromatography B, Elsevier, v. 877, n. 28, p.

3366–3377, 2009.

TELECOM. JAVA Agent DEvelopment Framework. 08 2015.

Http://jade.tilab.com/.

THEGUARDIAN. Can the internet of things save us from traffic jams? April

2015. Http://www.theguardian.com/technology/2015/apr/20/internet-of-things-

traffic.

THRUN, S. et al. Stanley: The robot that won the darpa grand challenge. In: The

2005 DARPA Grand Challenge. [S.l.]: Springer, 2007. p. 1–43.

TRIANNI, V.; NOLFI, S. Engineering the evolution of self-organizing behaviors in

swarm robotics: A case study. Artificial Life, MIT Press, v. 17, n. 3, p. 183–202,

2011.

UCI. Machine Learning Repository. Dezembro 2014.

Https://archive.ics.uci.edu/ml/datasets.html.

UGULINO, W. et al. Wearable computing: accelerometers’ data classification of

body postures and movements. In: Advances in Artificial Intelligence-SBIA

2012. [S.l.]: Springer, 2012. p. 52–61.

VAIDYA, J.; RANINGA, P.; BHALANI, J. Revolution technique for internet of

things “6lowpan”.

VALADARES, C.; NETTO, M.; LUCENA, C. A normative and self-organizing pi-

loting model for virtual network management. In: Workshop-Escola de Sistemas

de Agentes, seus Ambientes e aplicações, IEEE. [S.l.: s.n.], 2013. p. 41–46.

VELLOSO, E.; RAPOSO, A.; FUKS, H. Web of things: The collaborative inter-

action designer point of view. In: 1st Workshop of the Brazilian Institute for

Web Science Research. [S.l.: s.n.], 2010.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA



Chapter 6. Bibliography 102

VIDE, M. D.; NOLFI, S. Emergence of communication in teams of embodied

and situated agents. In: WORLD SCIENTIFIC. The Evolution of Language:

Proceedings of the 6th International Conference (EVOLANG6), Rome,

Italy, 12-15 April 2006. [S.l.], 2006. p. 198.

VIMALA, T.; RAJARAM, U. Self powered energy aware internet of things. Journal

of Computer Science, Science Publications, v. 10, n. 9, p. 1819, 2014.

VISION, C. Astah* community-Free UML Modeling Tool. 2011.

WEISS, G.; SEN, S. Adaptation and Learning in Multi-Agent Systems,. [S.l.]:

Springer-Verlag, 1995.

WHITE, J. E. Telescript technology: The foundation for the electronic marketplace.

General Magic white paper, v. 282, 1994.

WOOLDRIDGE, M. An introduction to multiagent systems. [S.l.]: John Wiley

& Sons, 2009.

WOOLDRIDGE, M.; JENNINGS, N. R. Intelligent agents: Theory and practice.

The knowledge engineering review, Cambridge Univ Press, v. 10, n. 02, p.

115–152, 1995.

YAO, X. Evolving artificial neural networks. Proceedings of the IEEE, IEEE,

v. 87, n. 9, p. 1423–1447, 1999.

YOSHIDA, K. et al. Statistical method application to knowledge base building for

reactor accident diagnostic system. Journal of Nuclear Science and Technol-

ogy, Taylor & Francis, v. 26, n. 11, p. 1002–1012, 1989.

ZAHEDI, K.; AY, N. Quantifying morphological computation. Entropy, Multidis-

ciplinary Digital Publishing Institute, v. 15, n. 5, p. 1887–1915, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1322090/CA


	FIoT: An Agent-Based Framework for Self-Adaptive and Self-Organizing Internet of Things Applications
	Resumo
	Contents
	Introduction
	Problem Statement
	Out of Scope
	Objectives
	Proposed Solution
	Contributions
	Dissertation Organization

	Background and Related Work
	The Internet of Things
	Multi-agent System
	Evolutionary Algorithms
	Artificial Neural Network (ANN)
	Evolutionary Robotics
	Self-adapting and Self-Organizing Systems 
	MAS for IoT

	FIoT: Framework for Internet of Things
	Domain Analysis
	Agent-Based Model
	Central Idea for the Framework Design
	Details of FIoT
	How to instantiate FIoT: Technical Details

	Evaluation: Illustrative Examples
	FIoT's Instances
	Quantified Things
	Smart City
	A Future Instance: Quantified US
	How the generated applications adhere to FIoT

	Conclusion
	Evaluation and Future Works

	Bibliography



